1887

Abstract

is an obligate intracellular bacterium and acquires both building blocks and energy from host cells for growth. The fatty acid-binding protein (FABP) plays an important role in uptake of long-chain fatty acids (LCFA) and energy metabolism by eukaryotic cells. The roles of FABP and LCFA in chlamydial infection were evaluated. Infection of liver cells with chlamydial organisms promoted fatty acid uptake by the infected cells, suggesting that LCFA may benefit chlamydial growth. Introduction of FABP into the liver cells not only enhanced fatty acid uptake, but also increased chlamydial intravacuolar replication and maturation. The FABP-enhanced chlamydial intracellular growth was dependent on the host cell uptake of fatty acids. These results have demonstrated that can productively infect liver cells and utilize FABP-transported LCFA for its own biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003491-0
2007-06-01
2019-08-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1935.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003491-0&mimeType=html&fmt=ahah

References

  1. Azuma, Y., Hirakawa, H., Yamashita, A., Cai, Y., Rahman, M. A., Suzuki, H., Mitaku, S., Toh, H., Goto, S. & other authors ( 2006; ). Genome sequence of the cat pathogen, Chlamydophila felis. DNA Res 13, 15–23.[CrossRef]
    [Google Scholar]
  2. Bauwens, J. E., Orlander, H., Gomez, M. P., Lampe, M., Morse, S., Stamm, W. E., Cone, R., Ashley, R., Swenson, P. & Holmes, K. K. ( 2002; ). Epidemic lymphogranuloma venereum during epidemics of crack cocaine use and HIV infection in the Bahamas. Sex Transm Dis 29, 253–259.[CrossRef]
    [Google Scholar]
  3. Burczynski, F. J., Zhang, M. N., Pavletic, P. & Wang, G. Q. ( 1997; ). Role of fatty acid binding protein on hepatic palmitate uptake. Can J Physiol Pharmacol 75, 1350–1355.[CrossRef]
    [Google Scholar]
  4. Campbell, L. A. & Kuo, C. C. ( 2002; ). Chlamydia pneumoniae pathogenesis. J Med Microbiol 51, 623–625.
    [Google Scholar]
  5. Campbell, L. A. & Kuo, C. C. ( 2004; ). Chlamydia pneumoniae – an infectious risk factor for atherosclerosis?. Nat Rev Microbiol 2, 23–32.[CrossRef]
    [Google Scholar]
  6. Carabeo, R. A., Mead, D. J. & Hackstadt, T. ( 2003; ). Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci U S A 100, 6771–6776.[CrossRef]
    [Google Scholar]
  7. Dreses-Werringloer, U., Gerard, H. C., Whittum-Hudson, J. A. & Hudson, A. P. ( 2006; ). Chlamydophila (Chlamydia) pneumoniae infection of human astrocytes and microglia in culture displays an active, rather than a persistent, phenotype. Am J Med Sci 332, 168–174.[CrossRef]
    [Google Scholar]
  8. Dumrese, C., Maurus, C. F., Gygi, D., Schneider, M. K., Walch, M., Groscurth, P. & Ziegler, U. ( 2005; ). Chlamydia pneumoniae induces aponecrosis in human aortic smooth muscle cells. BMC Microbiol 5, 2 [CrossRef]
    [Google Scholar]
  9. Everett, K. D. & Hatch, T. P. ( 1995; ). Architecture of the cell envelope of Chlamydia psittaci 6BC. J Bacteriol 177, 877–882.
    [Google Scholar]
  10. Farhi, D. & Dupin, N. ( 2005; ). An outbreak of lymphogranuloma venereum in Western Europe. Rev Prat 55, 1747–1750. (in French).
    [Google Scholar]
  11. Fields, K. A. & Hackstadt, T. ( 2000; ). Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol Microbiol 38, 1048–1060.
    [Google Scholar]
  12. Fraiz, J. & Jones, R. B. ( 1988; ). Chlamydial infections. Annu Rev Med 39, 357–370.[CrossRef]
    [Google Scholar]
  13. Gill, S. D. & Stewart, R. B. ( 1970; ). Respiration of L cells infected with Chlamydia psittaci. Can J Microbiol 16, 1033–1039.[CrossRef]
    [Google Scholar]
  14. Glatz, J. F. & van der Vusse, G. J. ( 1996; ). Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res 35, 243–282.[CrossRef]
    [Google Scholar]
  15. Hackstadt, T., Scidmore, M. A. & Rockey, D. D. ( 1995; ). Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci U S A 92, 4877–4881.[CrossRef]
    [Google Scholar]
  16. Hackstadt, T., Fischer, E. R., Scidmore, M. A., Rockey, D. D. & Heinzen, R. A. ( 1997; ). Origins and functions of the chlamydial inclusion. Trends Microbiol 5, 288–293.[CrossRef]
    [Google Scholar]
  17. Hatch, G. M. & McClarty, G. ( 1998; ). Cardiolipin remodeling in eukaryotic cells infected with Chlamydia trachomatis is linked to elevated mitochondrial metabolism. Biochem Biophys Res Commun 243, 356–360.[CrossRef]
    [Google Scholar]
  18. Levitt, D., Danen, R. & Levitt, P. ( 1986; ). Selective infection of astrocytes by Chlamydia trachomatis in primary mixed neuron-glial cell cultures. Infect Immun 54, 913–916.
    [Google Scholar]
  19. Ojcius, D. M., Degani, H., Mispelter, J. & Dautry-Varsat, A. ( 1998; ). Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells. J Biol Chem 273, 7052–7058.[CrossRef]
    [Google Scholar]
  20. Read, T. D., Myers, G. S., Brunham, R. C., Nelson, W. C., Paulsen, I. T., Heidelberg, J., Holtzapple, E., Khouri, H. & Federova, N. B ( 2003; ). Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31, 2134–2147.[CrossRef]
    [Google Scholar]
  21. Rodel, J., Prochnau, D., Prager, K., Pentcheva, E., Hartmann, M. & Straube, E. ( 2003; ). Increased production of matrix metalloproteinases 1 and 3 by smooth muscle cells upon infection with Chlamydia pneumoniae. FEMS Immunol Med Microbiol 38, 159–164.[CrossRef]
    [Google Scholar]
  22. Schachter, J. & Dawson, C. R. ( 2002; ). Elimination of blinding trachoma. Curr Opin Infect Dis 15, 491–495.[CrossRef]
    [Google Scholar]
  23. Schmitz-Esser, S., Linka, N., Collingro, A., Beier, C. L., Neuhaus, H. E., Wagner, M. & Horn, M. ( 2004; ). ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to chlamydiae and rickettsiae. J Bacteriol 186, 683–691.[CrossRef]
    [Google Scholar]
  24. Stephens, R. S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R. L. & other authors ( 1998; ). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759.[CrossRef]
    [Google Scholar]
  25. Su, H., McClarty, G., Dong, F., Hatch, G. M., Pan, Z. K. & Zhong, G. ( 2004; ). Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J Biol Chem 279, 9409–9416.[CrossRef]
    [Google Scholar]
  26. Tipples, G. & McClarty, G. ( 1993; ). The obligate intracellular bacterium Chlamydia trachomatis is auxotrophic for three of the four ribonucleoside triphosphates. Mol Microbiol 8, 1105–1114.[CrossRef]
    [Google Scholar]
  27. Wang, G., Burczynski, F., Hasinoff, B. & Zhong, G. ( 2002; ). Infection of myocytes with chlamydiae. Microbiology 148, 3955–3959.
    [Google Scholar]
  28. Wang, G., Gong, Y., Anderson, J., Sun, D., Minuk, G., Roberts, M. S. & Burczynski, F. J. ( 2005; ). Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells. Hepatology 42, 871–879.[CrossRef]
    [Google Scholar]
  29. Wylie, J. L., Hatch, G. M. & McClarty, G. ( 1997; ). Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J Bacteriol 179, 7233–7242.
    [Google Scholar]
  30. Yang, X., Coriolan, D., Schultz, K., Golenbock, D. T. & Beasley, D. ( 2005; ). Toll-like receptor 2 mediates persistent chemokine release by Chlamydia pneumoniae-infected vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 25, 2308–2314.[CrossRef]
    [Google Scholar]
  31. Zhong, G. M. & Brunham, R. C. ( 1991; ). Antigenic determinants of the chlamydial major outer membrane protein resolved at a single amino acid level. Infect Immun 59, 1141–1147.
    [Google Scholar]
  32. Zhong, G., Fan, P., Ji, H., Dong, F. & Huang, Y. ( 2001; ). Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J Exp Med 193, 935–942.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003491-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003491-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error