1887

Abstract

MCO1, a multicopper oxidase from exhibiting strong ferroxidase activity, has recently been described. This enzyme shows biochemical and structural similarities with the yeast Fet3p, a type I membrane glycoprotein that efficiently oxidizes Fe(II) to Fe(III) for its subsequent transport to the intracellular compartment by the iron permease Ftr1p. The genome database of was searched to verify whether it includes a canonical in addition to , and single copies of and orthologues were found, separated by a divergent promoter. encodes a 628 aa protein that exhibits overall identities of about 40 % with other reported Fet3 proteins. In addition to a secretion signal, it has a C-terminal transmembrane domain, characteristic of these cell-surface-attached ferroxidases. Structural modelling of Pc-Fet3 revealed that the active site has all the residues known to be essential for ferroxidase activity. encodes a 393 aa protein that shows about 38 % identity with several Ftr1 proteins from ascomycetes. Northern hybridization studies showed that the mRNA levels of both genes are reduced upon supplementation of the growth medium with iron, supporting the functional coupling of Fet3 and Ftr1 proteins .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003442-0
2007-06-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1772.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003442-0&mimeType=html&fmt=ahah

References

  1. Askwith C., Kaplan J. 1997; An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae. J Biol Chem 272:401–405 [CrossRef]
    [Google Scholar]
  2. Askwith C., Eide D., Van Ho A., Bernard P. S., Li L., Davis-Kaplan S., Sipe D. M., Kaplan J. 1994; The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410 [CrossRef]
    [Google Scholar]
  3. Assmann E. M., Ottoboni L. M., Ferraz A., Rodriguez J., De Mello M. P. 2003; Iron-responsive genes of Phanerochaete chrysosporium isolated by differential display reverse transcription polymerase chain reaction. Environ Microbiol 5:777–786 [CrossRef]
    [Google Scholar]
  4. Backa S., Gierer J., Reitberger T., Nilsson T. 1993; Hydroxyl radical activity associated with the growth of white-rot fungi. Holzforschung 47:181–187 [CrossRef]
    [Google Scholar]
  5. Baldrian P. 2006; Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30:215–242 [CrossRef]
    [Google Scholar]
  6. Bendtsen J. D., Nielsen H., Brunak S., von Heijne G. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795 [CrossRef]
    [Google Scholar]
  7. Bes B., Ranjeva R., Bondet A. M. 1983; Evidence for the involvement of activated oxygen in fungal degradation of lignocellulose. Biochimie 65:283–289 [CrossRef]
    [Google Scholar]
  8. Bonaccorsi di Patti M. C., Bellenchi G. C., Bielli P., Calabrese L. 1999; Release of highly active Fet3 from membranes of the yeast Pichia pastoris by limited proteolysis. Arch Biochem Biophys 372:295–299 [CrossRef]
    [Google Scholar]
  9. Bonaccorsi di Patti M. C., Felice M. R., Camuti A. P., Lania A., Musci G. 2000; The essential role of Glu-185 and Tyr-354 residues in the ferroxidase activity of Saccharomyces cerevisiae Fet3. FEBS Lett 472:283–286 [CrossRef]
    [Google Scholar]
  10. Cohen R., Jensen K. A., Houtmanm C. J., Hammel K. E. 2002; Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose. FEBS Lett 531:483–488 [CrossRef]
    [Google Scholar]
  11. Cohen R., Suzuki M. R., Hammel K. E. 2004; Differential stress-induced regulation of two quinone reductases in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 70:324–331 [CrossRef]
    [Google Scholar]
  12. de Silva D., Davis-Kaplan S., Fergestad J., Kaplan J. 1997; Purification and characterization of Fet3 protein, a yeast homologue of ceruloplasmin. J Biol Chem 272:14208–14213 [CrossRef]
    [Google Scholar]
  13. Doddapaneni H., Yadav J. S. 2005; Microarray-based global differential expression profiling of P450 monooxygenases and regulatory proteins for signal transduction pathways in the white rot fungus Phanerochaete chrysosporium. Mol Genet Genomics 274:454–466 [CrossRef]
    [Google Scholar]
  14. Eck R., Hundt S., Hartl A., Roemer E., Kunkel W. 1999; A multicopper oxidase gene from Candida albicans : cloning, characterization and disruption. Microbiology 145:2415–2422
    [Google Scholar]
  15. Evans C., Farmer J. Y., Palmer J. M. 1984; An extracellular heme protein from Coriolus versicolor. Phytochemistry 23:1247–1250 [CrossRef]
    [Google Scholar]
  16. Faison B. D., Kirk T. K. 1983; Relationship between lignin degradation and production of reduced oxygen species by Phanerochaete chrysosporium. Appl Environ Microbiol 46:1140–1145
    [Google Scholar]
  17. Fekete F. A., Chandhoke V., Jellison J. 1989; Iron-binding compounds produced by wood-decaying basidiomycetes. Appl Environ Microbiol 55:2720–2722
    [Google Scholar]
  18. Forney L. J., Reddy C. A., Tien M., Aust S. D. 1982; The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium. J Biol Chem 257:11455–11462
    [Google Scholar]
  19. Hammel K. E., Kapich A. N., Ryan Z. C., Jensen K. E. Jr 2002; Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30:445–453 [CrossRef]
    [Google Scholar]
  20. Hassett R. F., Yuan D. S., Kosman D. J. 1998; Spectral and kinetic properties of the Fet3 protein from Saccharomyces cerevisiae , a multinuclear copper ferroxidase enzyme. J Biol Chem 273:23274–23282 [CrossRef]
    [Google Scholar]
  21. Henriksson G., Ander P., Pettersson B., Pettersson G. 1995; Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan, and synthetic lignin. Appl Microbiol Biotechnol 42:790–796 [CrossRef]
    [Google Scholar]
  22. Hernandez-Macedo M. L., Ferraz A., Rodriguez J., Ottoboni L. M., De Mello M. P. 2002; Iron-regulated proteins in Phanerochaete chrysosporium and Lentinula edodes : differential analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis and two-dimensional polyacrylamide gel electrophoresis profiles. Electrophoresis 23:655–661 [CrossRef]
    [Google Scholar]
  23. Hoegger P. J., Kilaru S., James T. Y., Thacker J. R., Kües U. 2006; Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326 [CrossRef]
    [Google Scholar]
  24. Jensen K. A., Houtman C. J., Ryan Z. C., Hammel K. E. 2001; Pathways for extracellular Fenton chemistry in the brown rot basiodiomycete Gloeophyllum trabeum. Appl Environ Microbiol 67:2705–2711 [CrossRef]
    [Google Scholar]
  25. Kerem Z., Jensen K. A., Hammel K. E. 1999; Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum : evidence for an extracellular hydroquinone-driven fenton reaction. FEBS Lett 446:49–54 [CrossRef]
    [Google Scholar]
  26. Kirk T. K., Nakatsubo F. 1983; Chemical mechanism of an important cleavage reaction in the fungal degradation of lignin. Biochim Biophys Acta 756:376–384 [CrossRef]
    [Google Scholar]
  27. Kirk T. K., Mozuch M. D., Tien M. 1985; Free hydroxyl radical is not involved in an important reaction of lignin degradation by Phanerochaete chrysosporium Burds. Biochem J 226:455–460
    [Google Scholar]
  28. Koenigs J. W. 1974; Hydrogen peroxide and iron: a proposed system for decomposition of wood by brown rot basidiomycetes. Wood Fiber Sci 6:66–80
    [Google Scholar]
  29. Kosman D. J. 2003; Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47:1185–1197 [CrossRef]
    [Google Scholar]
  30. Kremer S. M., Wood P. M. 1992a; Production of Fenton's reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium. Eur J Biochem 208:807–814 [CrossRef]
    [Google Scholar]
  31. Kremer S. M., Wood P. M. 1992b; Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Eur J Biochem 205:133–138 [CrossRef]
    [Google Scholar]
  32. Krogh A., Larsson B., Sonnhammer E. L. L., von Heijne G. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580 [CrossRef]
    [Google Scholar]
  33. Kutsuki H., Gold M. H. 1982; Generation of hydroxyl radical and its involvement in lignin degradation by Phanerochaete chrysosporium. Biochem Biophys Res Commun 109:320–327 [CrossRef]
    [Google Scholar]
  34. Larrondo L. F., Salas L., Melo F., Cullen D., Vicuña R. 2003; A novel extracellular multicopper oxidase with ferroxidase activity in Phanerochaete chrysosporium. Appl Environ Microbiol 69:6257–6263 [CrossRef]
    [Google Scholar]
  35. Larrondo L. F., Cullen D., González B., Vicuña R. 2004; Characterization of a multicopper oxidase gene cluster in Phanerochaete chrysosporium and evidence of altered splicing of the mco transcripts. Microbiology 150:2775–2783 [CrossRef]
    [Google Scholar]
  36. Manubens A., Avila M., Canessa P., Vicuña R. 2003; Differential regulation of genes encoding manganese peroxidase (MnP) in the basidiomycete Ceriporiopsis subvermispora. Curr Genet 43:433–438 [CrossRef]
    [Google Scholar]
  37. Martinez D., Larrondo L. F., Putnam N., Gelpke M. D., Huang K., Chapman J., Helfenbein K. G., Ramaiya P., Detter J. C. other authors 2004; Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700 [CrossRef]
    [Google Scholar]
  38. Mason M. G., Nicholls P., Wilson M. T. 2003; Rotting by radicals – the role of cellobiose oxidoreductase?. Biochem Soc Trans 31:1335–1336 [CrossRef]
    [Google Scholar]
  39. Mertz L. M., Rashtchian A. 1994; Nucleotide imbalance and polymerase chain reaction: effects on DNA amplification and synthesis of high specific activity radiolabeled DNA probes. Anal Biochem 221:160–165 [CrossRef]
    [Google Scholar]
  40. Messerschmidt A., Ladenstein R., Huber R., Bolognesi M., Avigliano L., Petruzzelli R., Rossi A., Finazzi-Agro A. 1992; A refined crystal structure of ascorbate oxidase at 1.9 Å resolution. J Mol Biol 224:179–205 [CrossRef]
    [Google Scholar]
  41. Paronetto M. P., Miele R., Maugliani A., Borro M., Bonaccorsi di Patti M. C. 2001; Cloning of Pichia pastoris Fet3: insights into the high affinity iron uptake system. Arch Biochem Biophys 392:162–167 [CrossRef]
    [Google Scholar]
  42. Piontek K., Antorini M., Choinowski T. 2002; Crystal structure of a laccase from the fungus Trametes versicolor at 1.90 Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669 [CrossRef]
    [Google Scholar]
  43. Radisky D., Kaplan J. 1999; Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 274:4481–4484 [CrossRef]
    [Google Scholar]
  44. Sali A., Blundell T. L. 1993; Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815 [CrossRef]
    [Google Scholar]
  45. Severance S., Chakraborty S., Kosman D. J. 2004; The Ftr1p iron permease in the yeast plasma membrane: orientation, topology and structure–function relationships. Biochem J 380:487–496 [CrossRef]
    [Google Scholar]
  46. Solomon E. I., Sundaram U. M., Machonkin T. E. 1996; Multicopper oxidases and oxygenases. Chem Rev 96:2563–2606 [CrossRef]
    [Google Scholar]
  47. Stearman R., Yuan D. S., Yamaguchi-Iwai Y., Klausner R. D., Dancis A. 1996; A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271:1552–1557 [CrossRef]
    [Google Scholar]
  48. Tanaka H., Itakura S., Enoki A. 1999; Hydroxyl radical generation by an extracellular low-molecular weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Phanerochaete chrysosporium. Holzforschung 53:21–28
    [Google Scholar]
  49. Taylor A. B., Stoj C. S., Ziegler L., Kosman D. J., Hart P. J. 2005; The copper-iron connection in biology: structure of the metallo-oxidase Fet3p. Proc Natl Acad Sci U S A 102:15459–15464 [CrossRef]
    [Google Scholar]
  50. Wartmann T., Stephan U. W., Bube I., Boer E., Melzer M., Manteuffel R., Stoltenburg R., Guengerich L., Gellissen G., Kunze G. 2002; Post-translational modifications of the AFET3 gene product: a component of the iron transport system in budding cells and mycelia of the yeast Arxula adeninivorans. Yeast 19:849–862 [CrossRef]
    [Google Scholar]
  51. Wood P. M. 1994; Pathways for production of Fenton's reagent by wood-rotting fungi. FEMS Microbiol Rev 13:313–320
    [Google Scholar]
  52. Wymelenberg A. V., Denman S., Dietrich D., Bassett J., Yu X., Atalla R., Predki P., Rudsander U., Teeri T. T., Cullen D. 2002; Transcript analysis of genes encoding a family 61 endoglucanase and a putative membrane-anchored family 9 glycosyl hydrolase from Phanerochaete chrysosporium. Appl Environ Microbiol 68:5765–5768 [CrossRef]
    [Google Scholar]
  53. Xu F., Berka R. M., Wahleithner J. A., Nelson B. A., Shuster J. R., Brown S. H., Palmer A. E., Solomon E. I. 1998; Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem J 334:63–70
    [Google Scholar]
  54. Xu G., Goodell B. 2001; Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation binding of iron by cellulose. J Biotechnol 87:43–57 [CrossRef]
    [Google Scholar]
  55. Zaitsev V. N., Zaitseva I., Papiz M., Lindley P. F. 1999; An X-ray crystallographic study of the binding sites of the azide inhibitor and organic substrates to ceruloplasmin, a multi-copper oxidase in the plasma. J Biol Inorg Chem 4:579–587 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003442-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003442-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error