1887

Abstract

The high prevalence of hypermutable (mismatch repair-deficient) strains in patients with cystic fibrosis (CF) is thought to be driven by their co-selection with adaptive mutations required for long-term persistence. Whether the increased mutation rate of naturally hypermutable strains is associated with a biological benefit or cost for the colonization of secondary environments is not known. Thirty-nine strains were collected from ten patients with CF during their course of chronic lung infections and screened for hypermutability. Seven hypermutable strains (18 %) isolated from six patients with CF (60 %) were identified and assigned to five different genotypes. Complementation and sequence analysis in the , and genes of these hypermutable strains revealed novel mutations. To understand the consequences of hypermutation for the fitness of the organisms, five pairs of clinical wild-type/hypermutable, clonally related strains and the laboratory strains PAO1/PAO1Δ were subjected to competition and in the agar-beads mouse model of chronic airway infection. When tested in competition assay , the wild-type outcompeted four clinical hypermutable strains and the PAO1Δ strain. , all of the hypermutable strains were less efficient at establishing lung infection than their wild-type clones. These results suggest that hypermutation is associated with a biological cost, reducing the potential for colonization of new environments and therefore strain transmissibility.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003400-0
2007-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1445.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003400-0&mimeType=html&fmt=ahah

References

  1. Anthony, M., Rose, B., Pegler, M. B., Elkins, M., Service, H., Thamotharampillai, K., Watson, J., Robinson, M., Bye, P. & other authors ( 2002; ). Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J Clin Microbiol 40, 2772–2778.[CrossRef]
    [Google Scholar]
  2. Barth, A. L. & Pitt, T. L. ( 1996; ). The high amino-acid content of sputum from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa. J Med Microbiol 45, 110–119.[CrossRef]
    [Google Scholar]
  3. Bragonzi, A., Worlitzsch, D., Pier, G. B., Timpert, P., Ulrich, M., Hentzer, M., Andersen, J. B., Givskov, M., Conese, M. & Döring, G. ( 2005; ). Non-mucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model. J Infect Dis 192, 410–419.[CrossRef]
    [Google Scholar]
  4. Bragonzi, A., Wiehlmann, L., Klockgether, J., Cramer, N., Worlitzsch, D., Döring, G. & Tümmler, B. ( 2006; ). Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 152, 3261–3269.[CrossRef]
    [Google Scholar]
  5. Burns, J. L. ( 2005; ). Hypermutability in CF pathogens. Pediatr Pulmonol Suppl 28, 115–116.
    [Google Scholar]
  6. Campoy, S., Perez de Rozas, A. M., Barbe, J. & Badiola, I. ( 2000; ). Virulence and mutation rates of Salmonella typhimurium strains with increased mutagenic strength in a mouse model. FEMS Microbiol Lett 187, 145–150.[CrossRef]
    [Google Scholar]
  7. Cash, H. A., Woods, D. E., McCullough, B., Johanson, W. G., Jr & Bass, J. A. ( 1979; ). A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev Respir Dis 119, 453–459.
    [Google Scholar]
  8. Chao, L. & Cox, E. C. ( 1983; ). Competition between high and low mutating strains of Escherichia coli. Evolution 37, 125–134.[CrossRef]
    [Google Scholar]
  9. Ciofu, O., Riis, B., Pressler, T., Poulsen, H. E. & Hoiby, N. ( 2005; ). Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49, 2276–2282.[CrossRef]
    [Google Scholar]
  10. CLSI ( 2005; ). Performance Standards for Antimicrobial Susceptibility Testing. Fifteenth informational supplement, M100-S15. Wayne, PA: CLSI.
  11. Deretic, V., Schurr, M. J. & Yu, H. ( 1995; ). Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol 3, 351–356.[CrossRef]
    [Google Scholar]
  12. Dinesh, S. D., Grundmann, H., Pitt, T. L. & Römling, U. ( 2003; ). European-wide distribution of Pseudomonas aeruginosa clone C. Clin Microbiol Infect 9, 1228–1233.[CrossRef]
    [Google Scholar]
  13. Friedberg, E. C., Walker, G. C., Siede, W., Wood, R. D., Schultz, R. A. & Ellenberger, T. ( 1995; ). DNA Repair and Mutagenesis. Washington, DC: American Society for Microbiology.
  14. Funchain, P., Yeung, A., Stewart, J. L., Lin, R., Slupska, M. M. & Miller, J. H. ( 2000; ). The consequences of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. Genetics 154, 959–970.
    [Google Scholar]
  15. Giraud, A., Matic, I., Tenaillon, O., Clara, A., Radman, M., Fons, M. & Taddei, F. ( 2001; ). Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608.[CrossRef]
    [Google Scholar]
  16. Gutiérrez, O., Juan, C., Pérez, J. L. & Oliver, A. ( 2004; ). Lack of association between hypermutation and antibiotic resistance development in Pseudomonas aeruginosa isolates from intensive care unit patients. Antimicrob Agents Chemother 48, 3573–3575.[CrossRef]
    [Google Scholar]
  17. Häussler, S., Tümmler, B., Weissbrodt, H., Rohde, M. & Steinmetz, I. ( 1999; ). Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis 29, 621–625.[CrossRef]
    [Google Scholar]
  18. Hava, D. L. & Camilli, A. ( 2002; ). Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45, 1389–1406.
    [Google Scholar]
  19. Hogardt, M., Schubert, S., Adler, K., Götzfried, M. & Heesemann, J. ( 2006; ). Sequence variability and functional analysis of MutS of hypermutable Pseudomonas aeruginosa cystic fibrosis isolates. Int J Med Microbiol 296, 313–320.[CrossRef]
    [Google Scholar]
  20. LeClerc, J. E., Li, B., Payne, W. L. & Cebula, T. A. ( 1996; ). High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211.[CrossRef]
    [Google Scholar]
  21. Lee, D. G., Urbach, J. M., Wu, G., Liberati, N. T., Feinbaum, R. L., Miyata, S., Diggins, L. T., He, J., Saucier, M. & other authors ( 2006; ). Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7, R90.[CrossRef]
    [Google Scholar]
  22. Luzar, M. A., Thomassen, M. J. & Montie, T. C. ( 1985; ). Flagella and motility alterations in Pseudomonas aeruginosa strains from patients with cystic fibrosis: relationship to patient clinical condition. Infect Immun 50, 577–582.
    [Google Scholar]
  23. Macia, M. D., Blanquer, D., Togores, B., Sauleda, J., Pérez, J. L. & Oliver, A. ( 2005; ). Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother 49, 3382–3386.[CrossRef]
    [Google Scholar]
  24. Macia, M. D., Borrell, N., Segura, M., Gomez, C., Perez, J. L. & Oliver, A. ( 2006; ). Efficacy and potential for resistance selection of antipseudomonal treatments in a mouse model of lung infection by hypermutable Pseudomonas aeruginosa. Antimicrob Agents Chemother 50, 975–983.[CrossRef]
    [Google Scholar]
  25. Merino, D., Reglier-Poupet, H., Berche, P., Charbit, A. & European Listeria Genome Consortium ( 2002; ). A hypermutator phenotype attenuates the virulence of Listeria monocytogenes in a mouse model. Mol Microbiol 44, 877–887.[CrossRef]
    [Google Scholar]
  26. Miller, J. H. ( 1996; ). Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol 50, 625–643.[CrossRef]
    [Google Scholar]
  27. Nilsson, A. I., Kugelberg, E., Berg, O. G. & Andersson, D. I. ( 2004; ). Experimental adaptation of Salmonella typhimurium to mice. Genetics 168, 1119–1130.[CrossRef]
    [Google Scholar]
  28. Oliver, A., Canton, R., Campo, P., Baquero, F. & Blázquez, J. ( 2000; ). High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1254.[CrossRef]
    [Google Scholar]
  29. Oliver, A., Baquero, F. & Blázquez, J. ( 2002; ). The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol 43, 1641–1650.[CrossRef]
    [Google Scholar]
  30. Oliver, A., Levin, B. R., Juan, C., Baquero, F. & Blázquez, J. ( 2004; ). Hypermutation and the preexistence of antibiotic-resistant Pseudomonas aeruginosa mutants: implications for susceptibility testing and treatment of chronic infections. Antimicrob Agents Chemother 48, 4226–4233.[CrossRef]
    [Google Scholar]
  31. Potvin, E., Lehoux, D. E., Kukavica-Ibrulj, I., Richard, K. L., Sanschagrin, F., Lau, G. W. & Levesque, R. C. ( 2003; ). In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 5, 1294–1308.[CrossRef]
    [Google Scholar]
  32. Prunier, A. L., Malbruny, B., Laurans, M., Brouard, J., Duhamel, J. F. & Leclercq, R. ( 2003; ). High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J Infect Dis 187, 1709–1716.[CrossRef]
    [Google Scholar]
  33. Radman, M., Taddei, F. & Matic, I. ( 2000; ). Evolution-driving genes. Res Microbiol 151, 91–95.[CrossRef]
    [Google Scholar]
  34. Ratjen, F. & Döring, G. ( 2003; ). Cystic fibrosis. Lancet 361, 681–689.[CrossRef]
    [Google Scholar]
  35. Roman, F., Canton, R., Perez-Vazquez, M., Baquero, F. & Campos, J. ( 2004; ). Dynamics of long-term colonization of respiratory tract by Haemophilus influenzae in cystic fibrosis patients shows a marked increase in hypermutable strains. J Clin Microbiol 42, 1450–1459.[CrossRef]
    [Google Scholar]
  36. Römling, U., Schmidt, K. D. & Tümmler, B. ( 1997; ). Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J Mol Biol 271, 386–404.[CrossRef]
    [Google Scholar]
  37. Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. ( 1997; ). Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703–705.[CrossRef]
    [Google Scholar]
  38. Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S., Hufnagle, W. O., Kowalik, D. J. & other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  39. Taddei, F., Radman, M., Maynard-Smith, J., Toupance, B., Gouyon, P. H. & Godelle, B. ( 1997; ). Role of mutator alleles in adaptive evolution. Nature 387, 700–702.[CrossRef]
    [Google Scholar]
  40. Tümmler, B., Koopmann, U., Grothues, D., Weissbrodt, H., Steinkamp, G. & von der Hardt, H. ( 1991; ). Nosocomial acquisition of Pseudomonas aeruginosa by cystic fibrosis patients. J Clin Microbiol 29, 1265–1267.
    [Google Scholar]
  41. Watson, M. E., Jr, Burns, J. L. & Smith, A. L. ( 2004; ). Hypermutable Haemophilus influenzae with mutations in mutS are found in cystic fibrosis sputum. Microbiology 150, 2947–2958.[CrossRef]
    [Google Scholar]
  42. Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K. C., Birrer, P., Bellon, G., Berger, J. & other authors ( 2002; ). Effects of reduced mucus oxygen concentration in airway Pseudomonas infection of cystic fibrosis patients. J Clin Invest 109, 317–325.[CrossRef]
    [Google Scholar]
  43. Zahrt, T. C., Buchmeier, N. & Maloy, S. ( 1999; ). Effect of mutS and recD mutations on Salmonella virulence. Infect Immun 67, 6168–6172.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003400-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003400-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error