1887

Abstract

Biofilms, communities of micro-organisms attached to a surface, are responsible for many chronic diseases and are often associated with environmental reservoirs or lifestyles. is a Gram-positive, endospore-forming bacterium and is the aetiological agent of pulmonary, gastrointestinal and cutaneous anthrax. Anthrax infections are part of the natural lifecycle of many ruminants in North America, including cattle and bison, and is thought to be a central part of this ecosystem. However, in endemic areas in which humans and livestock interact, chronic cases of cutaneous anthrax are commonly reported. This suggests that biofilms of exist in the environment and are part of the ecology associated with its lifecycle. Currently, there are few data that account for the importance of the biofilm mode of life in , yet biofilms have been characterized in other pathogenic and non-pathogenic species, including and , respectively. This study investigated the phenotypic and functional role of biofilms in . The results demonstrate that readily forms biofilms which are inherently resistant to commonly prescribed antibiotics, and that antibiotic resistance is not solely the function of sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003376-0
2007-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1693.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003376-0&mimeType=html&fmt=ahah

References

  1. Auger S., Krin E., Aymerich S., Gohar M. 2006; Autoinducer 2 affects biofilm formation by Bacillus cereus. Appl Environ Microbiol 72:937–941 [CrossRef]
    [Google Scholar]
  2. Barbosa T. M., Serra C. R., La Ragione R. M., Woodward M. J., Henriques A. O. 2005; Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 71:968–978 [CrossRef]
    [Google Scholar]
  3. Bjarnsholt T., Jensen P. O., Burmolle M., Hentzer M., Kristoffersen P., Kote M., Nielsen J., Eberl L., Givskov M. 2005; Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383 [CrossRef]
    [Google Scholar]
  4. Branda S. S., Gonzales-Pastor J. E., Dervyn E., Ehrlich D., Losick R., Kolter R. 2004; Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol 186:3970–3979 [CrossRef]
    [Google Scholar]
  5. Branda S. S., Chu F., Kearns D. B., Losick R., Kolter R. 2006; A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238 [CrossRef]
    [Google Scholar]
  6. Christensen G. D., Baldassarri L., Simpson W. A. 1995; Methods for studying microbial colonization of plastics. Methods Enzymol 253:477–500
    [Google Scholar]
  7. Chu F., Akerans D. B., Branda S. S., Kolter R., Losick R. 2006; Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol 59:1216–1228 [CrossRef]
    [Google Scholar]
  8. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 [CrossRef]
    [Google Scholar]
  9. Donlan R. M. 2000; Role of biofilms in antimicrobial resistance. ASAIO J 46:S47–S52 [CrossRef]
    [Google Scholar]
  10. Donlan R. M. 2002; Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890 [CrossRef]
    [Google Scholar]
  11. Donlan R. M., Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant organisms. Clin Microbiol Rev 15:167–193 [CrossRef]
    [Google Scholar]
  12. Ehling-Schulz M., Fricker M., Scherer S. 2004; Bacillus cereus , the causative agent of an emetic type of food-borne illness. Mol Nutr Food Res 48:479–487 [CrossRef]
    [Google Scholar]
  13. Hsueh Y. H., Somers E. B., Lereclus D., Wong A. C. 2006; Biofilm formation by Bacillus cereus is influenced by PlcR, a pleiotropic regulator. Appl Environ Microbiol 72:5089–5092 [CrossRef]
    [Google Scholar]
  14. Keim P., Price L. B., Klevytska A. M., Smith K. L., Schupp J. M., Okinaka R., Jackson P. J., Hugh-Jones M. E. 2000; Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol 182:2928–2936 [CrossRef]
    [Google Scholar]
  15. Landry R. M., An D., Hupp J. T., Singh P. K., Parsek M. R. 2006; Mucin– Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol Microbiol 59:142–151 [CrossRef]
    [Google Scholar]
  16. Leid J. G., Shirtliff M. E., Costerton J. W., Stoodley P. 2002; Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70:6339–6345 [CrossRef]
    [Google Scholar]
  17. Leid J. G., Willson C. J., Shirtliff M. E., Hassett D. J., Parsek M. R., Jeffers A. K. 2005; The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175:7512–7518 [CrossRef]
    [Google Scholar]
  18. Li Y. H., Lau P. C. Y., Lee J. H., Ellen R. P., Cvitkovitch D. G. 2001; Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908 [CrossRef]
    [Google Scholar]
  19. Li Y. H., Tang N., Aspiras M. B., Lau P. C. Y., Lee J. H., Ellen R. P., Cvitkovitch D. G. 2002; A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184:2699–2708 [CrossRef]
    [Google Scholar]
  20. Lindsay D., Brozel V. S., von Holy A. 2005; Spore formation in Bacillus subtilis biofilms. J Food Prot 68:860–865
    [Google Scholar]
  21. Lindsay D., Brozel V. S., Von Holy A. 2006; Biofilm–spore response in Bacillus cereus and Bacillus subtilis during nutrient limitation. J Food Prot 69:1168–1172
    [Google Scholar]
  22. Lopez M. A., Jan-Roblero J., Romero J. M., Hernandez-Rodriguez C., Diaz de la Serna F. J. Z. 2006; Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico. FEMS Microbiol Ecol 58:145–154 [CrossRef]
    [Google Scholar]
  23. Merritt J., Qi F., Goodman S. D., Anderson M. H., Shi W. 2003; Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71:1972–1979 [CrossRef]
    [Google Scholar]
  24. Mock M., Fouet A. 2001; Anthrax. Annu Rev Microbiol 55:647–671 [CrossRef]
    [Google Scholar]
  25. Morikawa M. 2006; Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101:1–8 [CrossRef]
    [Google Scholar]
  26. O'Toole G. A., Kolter R. 1998; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28:449–461 [CrossRef]
    [Google Scholar]
  27. Parsek M. R., Singh P. K. 2003; Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701 [CrossRef]
    [Google Scholar]
  28. Rasko D. A., Altherr M. R., Han C. S., Ravel J. 2005; Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329
    [Google Scholar]
  29. Ren D., Bedzyk L. A., Setlow P., Thomas S. M., Ye R. W., Wood T. K. 2004; Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yver for biofilm maintenance. Biotechnol Bioeng 86:344–364 [CrossRef]
    [Google Scholar]
  30. Ryu J. H., Beuchat L. R. 2005; Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer. J Food Prot 68:2614–2622
    [Google Scholar]
  31. Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G. 2002; Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154 [CrossRef]
    [Google Scholar]
  32. Shi X., Rao N. N., Kornberg A. 2004; Inorganic polyphosphate in Bacillus cereus : motility, biofilm formation, and sporulation. Proc Natl Acad Sci U S A 101:17061–17065 [CrossRef]
    [Google Scholar]
  33. Spencer R. C. 2003; Bacillus anthracis. J Clin Pathol 56:182–187 [CrossRef]
    [Google Scholar]
  34. Stanley N. R., Lazazzera B. A. 2004; Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924 [CrossRef]
    [Google Scholar]
  35. Stanley N. R., Britton R. A., Grossman A. D., Lazazzera B. A. 2003; Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185:1951–1957 [CrossRef]
    [Google Scholar]
  36. Stapper A. P., Narasimhan G., Ohman D. E., Barakat J., Hentzer M., Molin S., Kharazimi A., Hoiby N., Mathee K. 2004; Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 53:679–690 [CrossRef]
    [Google Scholar]
  37. Steinberger R. E., Holden P. A. 2005; Extracellular DNA in single and multi-species unsaturated biofilms. Appl Environ Microbiol 71:5404–5410 [CrossRef]
    [Google Scholar]
  38. Stewart P. S., Costerton J. W. 2001; Antibiotic resistance in bacterial biofilms. Lancet 358:135–138 [CrossRef]
    [Google Scholar]
  39. Tam N. K., Uyen N. Q., Hong H. A., Le Duc H., Hoa T. T., Serra C. R., Herniques A. O., Cutting S. M. 2006; The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol 188:2692–2700 [CrossRef]
    [Google Scholar]
  40. Whitchurch C. B., Tolker-Nielsen T., Ragas P. C., Mattick J. S. 2002; Extracelluar DNA required for bacterial biofilm formation. Science 295:1487 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003376-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003376-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error