1887

Abstract

Dermatophytes and other filamentous fungi excrete sulphite as a reducing agent during keratin degradation. In the presence of sulphite, cystine in keratin is directly cleaved to cysteine and -sulphocysteine, and thereby, reduced proteins become accessible to hydrolysis by a variety of secreted endo- and exoproteases. A gene encoding a sulphite transporter in (), and orthologues in the dermatophytes and ( and , respectively), were identified by functional expression in . Like the sulphite efflux pump Ssu1p, AfuSsu1p, TruSsu1p and AbeSsu1p belong to the tellurite-resistance/dicarboxylate transporter (TDT) family which includes the tellurite transporter TehAp and the malate transporter Mae1p. Seven genes in the genome encode transporters of the TDT family. However, gene disruption of and of the two more closely related paralogues revealed that only encodes a sulphite efflux pump. TruSsulp and AbeSsulp are believed to be the first members of the TDT family identified in dermatophytes. The relatively high expression of and in dermatophytes compared to that of in likely reflects a property of dermatophytes which renders these fungi pathogenic. Sulphite transporters could be a new target for antifungal drugs in dermatology, since proteolytic digestion of hard keratin would not be possible without prior reduction of disulphide bridges.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003335-0
2007-03-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/905.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003335-0&mimeType=html&fmt=ahah

References

  1. Avram, D. & Bakalinsky, A. T. ( 1997; ). SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae. J Bacteriol 179, 5971–5974.
    [Google Scholar]
  2. Chambers, S. P., Prior, S. E., Barstow, D. A. & Minton, N. P. ( 1988; ). The pMTL nic cloning vectors. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68, 139–149.[CrossRef]
    [Google Scholar]
  3. Cove, D. J. ( 1966; ). The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113, 51–56.[CrossRef]
    [Google Scholar]
  4. Denikus, N., Orfaniotou, F., Wulf, G., Lehmann, P. F., Monod, M. & Reichard, U. ( 2005; ). Fungal antigens expressed during invasive aspergillosis. Infect Immun 73, 4704–4713.[CrossRef]
    [Google Scholar]
  5. Donalies, U. E. & Stahl, U. ( 2002; ). Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast 19, 475–484.[CrossRef]
    [Google Scholar]
  6. Fumeaux, J., Mock, M., Ninet, B., Jan, I., Bontems, O., Léchenne, B., Lew, D., Panizzon, R. G., Jousson, O. & Monod, M. ( 2004; ). First report of Arthroderma benhamiae in Switzerland. Dermatology 208, 244–250.[CrossRef]
    [Google Scholar]
  7. Grobler, J., Bauer, F., Subden, R. E. & vanVuuren, H. J. J. ( 1995; ). The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids. Yeast 11, 1485–1491.[CrossRef]
    [Google Scholar]
  8. Grossberger, D. ( 1987; ). Minipreps of DNA from bacteriophage lambda. Nucleic Acids Res 15, 6737.[CrossRef]
    [Google Scholar]
  9. Henderson, J. W., Ricker, R. D., Bidlingmeyer, B. A. & Woodward, C. ( 2000; ). Rapid, Accurate, Sensitive and Reproducible Analysis of Amino Acids. Agilent technical note no. 5980–1193E.
  10. Jousson, O., Léchenne, B., Bontems, O., Capoccia, S., Mignon, B., Barblan, J., Quadroni, M. & Monod, M. ( 2004a; ). Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum. Microbiology 150, 301–310.[CrossRef]
    [Google Scholar]
  11. Jousson, O., Léchenne, B., Bontems, O., Mignon, B., Reichard, U., Barblan, J., Quadroni, M. & Monod, M. ( 2004b; ). Secreted subtilisin gene family in Trichophyton rubrum. Gene 339, 79–88.[CrossRef]
    [Google Scholar]
  12. Kunert, J. ( 1972a; ). Keratin decomposition by dermatophytes: evidence of the sulphitolysis of the protein. Experientia 28, 1025–1026.[CrossRef]
    [Google Scholar]
  13. Kunert, J. ( 1972b; ). Thiosulphate esters in keratin attacked by dermatophytes in vitro. Sabouraudia 10, 6–13.[CrossRef]
    [Google Scholar]
  14. Kunert, J. ( 1975; ). Formation of sulphate, sulphite and S-sulphocysteine by the fungus Microsporum gypseum during growth on cystine. Folia Microbiol 20, 142–151.[CrossRef]
    [Google Scholar]
  15. Kunert, J. ( 1976; ). Keratin decomposition by dermatophytes. II. Presence of S-sulfocysteine and cysteic acid in soluble decomposition products. Z Allg Mikrobiol 16, 97–105.[CrossRef]
    [Google Scholar]
  16. Kunert, J. ( 1982; ). Utilization of l- and dl-cystine by the fungus Microsporum gypseum. Folia Microbiol 27, 390–394.[CrossRef]
    [Google Scholar]
  17. Kunert, J. ( 1989; ). Utilization of l-cystine as a source of carbon and nitrogen by various fungi. Acta Univ Palacki Olomuc Fac Med 123, 351–364.
    [Google Scholar]
  18. Kunert, J. ( 1992; ). Effect of reducing agents on proteolytic and keratinolytic activity of enzymes of Microsporum gypseum. Mycoses 35, 343–348.
    [Google Scholar]
  19. Kunert, J. ( 2000; ). Physiology of keratinophilic fungi. Rev Iberoam Micol 17, 77–85.
    [Google Scholar]
  20. Kwong-Chung, K. J. & Bennet, J. E. ( 1992; ). Medical Mycology. Philadelphia and London: Lea and Febiger.
  21. Monod, M., Togni, G., Hube, B. & Sanglard, D. ( 1994; ). Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol 13, 357–368.[CrossRef]
    [Google Scholar]
  22. Monod, M., Léchenne, B., Jousson, O., Grand, D., Zaugg, C., Stocklin, R. & Grouzmann, E. ( 2005; ). Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology 151, 145–155.[CrossRef]
    [Google Scholar]
  23. Obata, Y. & Ishikawa, Y. ( 1959; ). Biochemical studies on sulfur-containing aminoacids. II. Sulfate formation from l-cystine by molds. J Biochem 46, 293–295.
    [Google Scholar]
  24. Paris, S. ( 1994; ). Isolation of protease negative mutants of Aspergillus fumigatus by insertion of a disrupted gene. In Molecular Biology of Pathogenic Fungi: a Laboratory Manual, pp. 49–55. Edited by B. Maresca & G. S. Kobayashi. New York: Telos Press.
  25. Park, H. & Bakalinsky, A. T. ( 2000; ). SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast 16, 881–888.[CrossRef]
    [Google Scholar]
  26. Park, H., Lopez, N. I. & Bakalinsky, A. T. ( 1999; ). Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker. Curr Genet 36, 339–344.[CrossRef]
    [Google Scholar]
  27. Punt, S. J., Oliver, P. O., Dingemanse, M. A., Pouwels, P. H. & van den Hondel, C. A. M. J. J. ( 1987; ). Transformation of Aspergillus based on hygromycin B resistance marker from Escherichia coli. Gene 56, 117–124.[CrossRef]
    [Google Scholar]
  28. Ruffin, P., Andrieu, S., Biserte, G. & Biguet, J. ( 1976; ). Sulphitolysis in keratinolysis. Biochemical proof. Sabouraudia 14, 181–184.[CrossRef]
    [Google Scholar]
  29. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Scaringelli, F. P., Saltzman, B. E. & Frey, S. A. ( 1967; ). Spectrophotometric determination of atmospheric sulfur dioxide. Anal Chem 39, 1709–1726.[CrossRef]
    [Google Scholar]
  31. Sherman, F. ( 1991; ). Mapping yeast genes. Methods Enzymol 194, 38–57.
    [Google Scholar]
  32. Thomas, D. & Surdin-Kerjan, Y. ( 1997; ). Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61, 503–532.
    [Google Scholar]
  33. Tilburn, J., Scazzocchio, C., Taylor, G. G., Zabicky-Zissman, J. H., Lockington, R. A. & Davies, R. W. ( 1983; ). Transformation by integration in Aspergillus nidulans. Gene 26, 205–221.[CrossRef]
    [Google Scholar]
  34. Viklund, H. & Elofsson, A. ( 2004; ). Best alpha-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci 13, 1908–1917.[CrossRef]
    [Google Scholar]
  35. Walter, E. G., Weiner, J. H. & Taylor, D. E. ( 1991; ). Nucleotide sequence and overexpression of the tellurite-resistance determinant from the IncHII plasmid pHH1508a. Gene 101, 1–7.[CrossRef]
    [Google Scholar]
  36. Weitzman, I. & Summerbell, R. C. ( 1995; ). The dermatophytes. Clin Microbiol Rev 8, 240–259.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003335-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003335-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error