1887

Abstract

The bacterial genus has long been appreciated for its ability to produce various kinds of medically important secondary metabolites, such as antibiotics, anti-tumour agents, immunosuppressants and enzyme inhibitors. Tautomycetin (TMC), which is produced by sp. CK4412, is a novel activated T cell-specific immunosuppressive compound with an ester bond linkage between a terminal cyclic anhydride moiety and a linear polyketide chain bearing an unusual terminal alkene. Using a polyketide methylmalonyl-CoA acyltransferase gene as a probe, three overlapping cosmids were isolated from the genomic library of TMC-producing sp. CK4412. Sequence information of an approximately 70 kb contiguous DNA region revealed two multi-modular type I polyketide synthases (PKSs), and 12 additional gene products presumably involved in TMC biosynthesis. The deduced roles for most of the TMC PKS catalytic domains were consistent with the expected functions necessary for TMC chain elongation and processing. In addition, disruption of a putative TMC acyl-CoA transferase gene, located upstream of the PKS gene locus, completely abolished TMC biosynthesis. Taken together, these data provide strong supporting evidence that the cloned gene cluster identified in this study is responsible for TMC biosynthesis in sp. CK4412, and set the stage for detailed genetic and biochemical studies of the biosynthesis of this important metabolite.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003194-0
2007-04-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1095.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003194-0&mimeType=html&fmt=ahah

References

  1. Aparicio J. F., Molnar I., Schwecke T., Konig A., Haydock S. F., Khaw L. E., Staunton J., Leadlay P. F.. 1996; Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus : analysis of the enzymatic domains in the modular polyketide synthase. Gene169:9–16[CrossRef]
    [Google Scholar]
  2. Ayuso-Sacido A., Genilloud O.. 2005; New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol49:10–24[CrossRef]
    [Google Scholar]
  3. Chang Z., Sitachitta N., Rossi J. V., Roberts M. A., Flatt P. M., Jia J., Sherman D. H., Gerwick W. H.. 2004; Biosynthetic pathway and gene cluster analysis of Curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod67:1356–1367[CrossRef]
    [Google Scholar]
  4. Chater K. F.. 1990; Multi-level regulation of Streptomyces differentiation. Trends Genet5:372–377
    [Google Scholar]
  5. Cheng X. C., Kihara T., Ying X., Uramoto M., Osada H., Kusakabe H., Wang B. N., Kobayashi Y., Ko K.. & other authors. 1989; A new antibiotic, tautomycetin. J Antibiot42:141–144[CrossRef]
    [Google Scholar]
  6. Del Vecchio F., Petkovic H., Kendrew S. G., Low L., Wilkinson B., Lill R., Cortes J., Rudd B. A., Staunton J., Leadlay P. F.. 2003; Active-site residue, domain and module swaps in modular polyketide synthases. J Ind Microbiol Biotechnol30:489–494[CrossRef]
    [Google Scholar]
  7. Engemann C., Elssner T., Pfeifer S., Krumbholz C., Maier T., Kleber H.-P.. 2005; Identification and functional characterization of genes and corresponding enzymes involved in carnitine metabolism of Proteus sp. Arch Microbiol183:176–189[CrossRef]
    [Google Scholar]
  8. Floss H. G.. 2006; Combinatorial biosynthesis – potential and problems. J Biotechnol124:242–257[CrossRef]
    [Google Scholar]
  9. Gandolfi R., Converti A., Pirozzi D., Molinari F.. 2001; Efficient and selective microbial esterification with dry mycelium of Rhizopus oryzae. J Biotechnol92:21–26[CrossRef]
    [Google Scholar]
  10. Grunewald J., Marahiel M. A.. 2006; Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev70:121–146[CrossRef]
    [Google Scholar]
  11. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F.. 2003; PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A100:1541–1546[CrossRef]
    [Google Scholar]
  12. Haydock S., Aparicio J. F., Molnar I., Schwecke T., Koing A., Marsden A. F. A., Galloway I. S., Staunton J., Leadlay P. F.. 1995; Divergent structural motifs correlated with the substrate specificity of (methyl)malonyl-CoA: acylcarrier protein transacylase domains in modular polyketide synthases. FEBS Lett374:246–248[CrossRef]
    [Google Scholar]
  13. Haydock S. F., Appleyard A. N., Mironenko T., Lester J., Scott N., Leadlay P. F.. 2005; Organization of the biosynthetic gene cluster for the macrolide concanamycin A in Streptomyces neyagawaensis ATCC. Microbiology151:3161–3169[CrossRef]
    [Google Scholar]
  14. Hopwood D. A.. 1987; Towards an understanding of gene switching in Streptomyces : the basis of sporulation and antibiotic production. Proc R Soc Lond Series B235:2257–2269
    [Google Scholar]
  15. Hranueli D., Cullum J., Basrak B., Goldstein P., Long P. F.. 2005; Plasticity of the Streptomyces genome-evolution and engineering of new antibiotics. Curr Med Chem12:1697–1704[CrossRef]
    [Google Scholar]
  16. Isaacson D. M., Kirschbaum J.. 1986; Assays of antimicrobial substances. In Manual of Industrial Microbiology and Biotechnology pp410–435 Edited by Demain A. L.. Solomon N. A.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Katz L., Donadio S.. 1993; Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol47:875–912[CrossRef]
    [Google Scholar]
  18. Keatinge-Clay A. T., Stroud R. M.. 2006; The structure of a ketoreductase determines the organization of the beta-carbon processing enzymes of modular polyketide synthases. Structure14:737–748[CrossRef]
    [Google Scholar]
  19. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces Genetics Norwich, UK: The John Innes Foundation;
    [Google Scholar]
  20. Li W., Ju J., Osada H., Shen B.. 2006; Utilization of the methoxymalonyl-acyl carrier protein biosynthesis locus for cloning of the tautomycin biosynthetic gene cluster from Streptomyces spiroverticillatus. J Bacteriol188:4148–4152[CrossRef]
    [Google Scholar]
  21. Myles D. C.. 2003; Novel biologically active natural and unnatural products. Curr Opin Biotechnol14:627–633[CrossRef]
    [Google Scholar]
  22. Nogle L. M., Gerwick W. H.. 2002; Somocystinamide A, a novel cytotoxic disulfide dimer from a Fijian marine cyanobacterial mixed assemblage. Org Lett4:1095–1098[CrossRef]
    [Google Scholar]
  23. Rawlings B. J.. 2001; Type I polyketide biosynthesis in bacteria. Nat Prod Rep18:231–281[CrossRef]
    [Google Scholar]
  24. Schwecke T., Aparicio J. F., Molnar I., Koing A., Khaw L. E., Haydock S. F., Oliynyk M., Caffrey P., Cortes J.. & other authors 1995; The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci U S A92:7839–7843[CrossRef]
    [Google Scholar]
  25. Shim J. H., Lee H. K., Chang E. J., Chae W. J., Han J. H., Han D. J., Morio T., Yang J. J., Bothwell A., Lee S. K.. 2002; Immunosuppressive effects of tautomycetin in vivo and in vitro via T cell-specific apoptosis induction. Proc Natl Acad Sci U S A99:10617–10622[CrossRef]
    [Google Scholar]
  26. Strauch E., Takano E., Baylis H. A., Bibb M. J.. 1991; The stringent response in Streptomyces coelicolor A3(2. Mol Microbiol5:289–298[CrossRef]
    [Google Scholar]
  27. Ubukata M., Cheng X.-C., Uzawa J., Isono K.. 1995; Biosynthesis of the dialkylmaleic anhydride-containing antibiotics, tautomycin and tautomycetin. J Chem Soc Perkin Trans1:2399–2404
    [Google Scholar]
  28. Wenzel S. C., Muller R.. 2005; Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol16:594–606[CrossRef]
    [Google Scholar]
  29. William H., Gerwick P. J., Proteau D. G., Nagle E. H., Andrei B., Doris L. S.. 1994; Structure of Curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem59:1243–1245[CrossRef]
    [Google Scholar]
  30. Wu K., Chung L., Revill W. P., Katz L., Reeves C. D.. 2000; The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. Gene251:81–90[CrossRef]
    [Google Scholar]
  31. Wu M., Okino T., Nogle L. M., Marquez B. L., Williamson R. T., Sitachitta N., Berman F. W., Murray T. F., McGough K.. & other authors 2000; Structure, synthesis, and biological properties of Kalkitoxin, a novel neurotoxin from the marine cyanobacterium Lyngbya majuscula. J Amer Chem Soc122:12041–12042[CrossRef]
    [Google Scholar]
  32. Zirkle R., Black T. A., Gorlach J., Ligon J. M., Molnar I.. 2004; Analysis of a 108-kb region of the Saccharopolyspora spinosa genome covering the obscurin polyketide synthase locus. DNA Seq15:123–134
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003194-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003194-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error