1887

Abstract

Signal peptidases are vital enzymes in the protein secretion pathway. In Archaea, type I signal peptidase, responsible for the cleavage of secretory signal peptides from the majority of secreted proteins, and prepilin peptidase-like signal peptidase, responsible for processing signal peptides from prepilin-like proteins like the preflagellins and various sugar-binding proteins, have been identified. In addition, the archaeal signal peptide peptidase, responsible for degradation of signal peptides after their removal from precursor proteins, has been characterized. These enzymes seem to have a mosaic of eukaryal and bacterial characteristics, and also possess unique archaeal traits. In this review, the most current knowledge with regard to these enzymes is summarized, including their cellular function, catalytic mechanism and distribution and conservation among archaeal species. Comparisons are drawn of these enzymes to their bacterial and eukaryal counterparts, and unique archaeal features highlighted.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003087-0
2007-02-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/305.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003087-0&mimeType=html&fmt=ahah

References

  1. Albers S.-V., Driessen A. M.. 2002; Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus : a genomic survey. Arch Microbiol177:209–216[CrossRef]
    [Google Scholar]
  2. Albers S.-V., Szabo Z., Driessen A. J. M.. 2003; Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J Bacteriol185:3918–3925[CrossRef]
    [Google Scholar]
  3. Albers S.-V., Szabo Z., Driessen A. J. M.. 2006; Protein secretion in the Archaea: multiple paths towards a unique cell surface. Nat Rev Microbiol4:537–547[CrossRef]
    [Google Scholar]
  4. Bardy S. L., Jarrell K. F.. 2002; FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol Lett208:53–59[CrossRef]
    [Google Scholar]
  5. Bardy S. L., Jarrell K. F.. 2003; Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae . Mol Microbiol50:1339–1347[CrossRef]
    [Google Scholar]
  6. Bardy S. L., Eichler J., Jarrell K. F.. 2003; Archaeal signal peptides – a comparative survey at the genome level. Protein Sci12:1833–1843[CrossRef]
    [Google Scholar]
  7. Bardy S. L., Ng S. Y., Carnegie D. S., Jarrell K. F.. 2005; Site-directed mutagenesis analysis of amino acids critical for activity of the type I signal peptidase of the archaeon Methanococcus voltae . J Bacteriol187:1188–1191[CrossRef]
    [Google Scholar]
  8. Berks B. C.. 1996; A common export pathway for proteins binding complex redox cofactors?. Mol Microbiol22:393–404[CrossRef]
    [Google Scholar]
  9. Bolhuis A.. 2002; Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway?. Microbiology148:3335–3346
    [Google Scholar]
  10. Bolhuis A., Matzen A., Hyyrylainen H.-L., Kontinen V. P., Meimer R., Chapuis J., Venema G., Bron S., Freudl R., van Dijl J. M.. 1999; Signal peptide peptidase- and ClpP-like proteins of Bacillus subtilis required for efficient translocation and processing of secretory proteins. J Biol Chem274:24585–24592[CrossRef]
    [Google Scholar]
  11. Chaban B., Ng S. Y., Jarrell K. F.. 2006; Archaeal habitats – from the extreme to the ordinary. Can J Microbiol52:73–116[CrossRef]
    [Google Scholar]
  12. Dalbey R. E., Lively M. O., Bron S., van Dijl J. M.. 1997; The chemistry and enzymology of the type I signal peptidases. Protein Sci6:1129–1138[CrossRef]
    [Google Scholar]
  13. Eichler J.. 2000; Archaeal protein translocation: crossing membranes in the third domain of life. Eur J Biochem267:3402–3412[CrossRef]
    [Google Scholar]
  14. Eichler J.. 2002; Archaeal signal peptidases from the genus Thermoplasma : structural and mechanistic hybrids of the bacterial and eukaryal enzymes. J Mol Evol54:411–415[CrossRef]
    [Google Scholar]
  15. Falb M., Aivaliotis M., Garcia-Rizo C., Tebbe B. B. A., Klein C., Konstantinidis K., Siedler F., Pfeiffer F., Oesterhelt D.. 2006; Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey. J Mol Biol262:915–924
    [Google Scholar]
  16. Fine A., Irihimovitch V., Dahan I., Konrad Z., Eichler J.. 2006; Cloning, expression, and purification of functional Sec11a and Sec11b, type I signal peptidases of the archaeon Haloferax volcanii . J Bacteriol188:1911–1919[CrossRef]
    [Google Scholar]
  17. LaPointe C. F., Taylor R. K.. 2000; The type IV prepilin peptidases comprise a novel family of aspartic acid proteases. J Biol Chem275:1502–1510[CrossRef]
    [Google Scholar]
  18. Lemberg M. K., Martoglio B.. 2004; On the mechanism of SPP-catalysed intramembrane proteolysis: conformational control of peptide bond hydrolysis in the plane of the membrane. FEMS Lett564:213–218
    [Google Scholar]
  19. Lory S., Strom M. S.. 1997; Structure-function relationship of type-IV prepilin peptidase of Pseudomonas aeruginosa – a review. Gene192:117–121[CrossRef]
    [Google Scholar]
  20. Matsumi R., Atomi H., Imanaka T.. 2005; Biochemical properties of a putative signal peptide peptidase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol187:7072–7080[CrossRef]
    [Google Scholar]
  21. Matsumi R., Atomi H., Imanaka T.. 2006; Identification of the amino acid residue essential for proteolytic activity in an archaeal signal peptide peptidase. J Biol Chem281:10533–10539[CrossRef]
    [Google Scholar]
  22. Mattick J. S.. 2002; Type IV pili and twitching motility. Annu Rev Microbiol56:289–314[CrossRef]
    [Google Scholar]
  23. Ng S. Y. M., Jarrell K. F.. 2003; Cloning and characterization of archaeal type I signal peptidase from Methanococcus voltae . J Bacteriol185:5936–5942[CrossRef]
    [Google Scholar]
  24. Ng S. Y. M., Chaban B., Jarrell K. F.. 2006; Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications. J Mol Microbiol Biotechnol11:167–191[CrossRef]
    [Google Scholar]
  25. Nielsen H., Brunak S., von Heijne G.. 1999; Machine learning approaches for the prediction of signal peptides and other learning sorting signals. Protein Eng12:3–9[CrossRef]
    [Google Scholar]
  26. Novak P., Dev I. K.. 1998; Degradation of a signal peptide by protease IV and oligopeptidase A. J Bacteriol170:5065–5075
    [Google Scholar]
  27. Paetzel M., Dalbey R. E., Strynadka N. C. J.. 2002; Crystal structure of a bacterial signal peptidase apoenzyme. J Biol Chem277:9512–9519[CrossRef]
    [Google Scholar]
  28. Pohlschroder M., Prinz W. A., Hartmann E., Beckwith J.. 1997; Protein translocation in the three domains of life: variations on a theme. Cell91:563–566[CrossRef]
    [Google Scholar]
  29. Pohlschroder M., Gimenez M. I., Jarrell K. F.. 2005; Protein transport in Archaea: Sec and twin arginine translocation pathways. Curr Opin Microbiol8:713–719[CrossRef]
    [Google Scholar]
  30. Rose R. W., Bruser T., Kissinger J. C., Pohlschroder M.. 2002; Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol45:943–950[CrossRef]
    [Google Scholar]
  31. Saleh M. T., Fillon M., Brennan P. J., Belisle J. T.. 2001; Identification of putative exported/secreted proteins in prokaryotic proteomes. Gene269:195–204[CrossRef]
    [Google Scholar]
  32. Sargent F., Berks B. C., Palmer T.. 2006; Pathfinders and trailblazers: a prokaryotic targeting system for transport of folded proteins. FEMS Microbiol Lett254:198–207[CrossRef]
    [Google Scholar]
  33. Saunders S. F., Ng C., Raftery M., Guihaus M., Goodchild A., Cavicchioli R.. 2006; Proteomic and computational analysis of secreted proteins with type I signal peptides from the Antarctic archaeon Methanococcoides burtonii . J Proteome Res5:2457–2464[CrossRef]
    [Google Scholar]
  34. Steiner H., Haass C.. 2000; Intramembrane proteolysis by presenilins. Nat Rev Mol Cell Biol1:217–224[CrossRef]
    [Google Scholar]
  35. Szabo Z., Albers S.-V., Driessen A. J. M.. 2006; Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus . J Bacteriol188:1437–1443[CrossRef]
    [Google Scholar]
  36. Thomas N. A., Chao E. D., Jarrell K. F.. 2001; Identification of amino acids in the leader peptide of Methanococcus voltae preflagellin that are important in posttranslational processing. Arch Microbiol175:263–269[CrossRef]
    [Google Scholar]
  37. Tjalsma H., Meijer W. J., Venema G., Bron S., van den Dolder J., van Dijl J. M.. 1999; The plasmid-encoded signal peptidase SipP can functionally replace the major signal peptidases SipS and SipT of Bacillus subtilis . J Bacteriol181:2448–2454
    [Google Scholar]
  38. Tjalsma H., Stover A. G., Driks A., Venema G., Bron S., van Dijl J. M.. 2000; Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis . J Biol Chem275:25102–25108[CrossRef]
    [Google Scholar]
  39. Tomich M., Fine D. H., Figurski D. H.. 2006; The TadV protein of Actinobacillus actinomycetemcomitans is a novel aspartic acid prepilin peptidase required for maturation of the Flp1 pilin and TadE and TadF pseudopilins. J Bacteriol188:6899–6914[CrossRef]
    [Google Scholar]
  40. Tschantz W. R., Sung M., Dalgado-Partin V. M., Dalbey R. E.. 1993; A serine and a lysine residue implicated in the catalytic mechanism of Escherichia coli leader peptidase. J Biol Chem268:27349–27354
    [Google Scholar]
  41. Tuteja R.. 2005; Type I signal peptidase: an overview. Arch Biochem Biophys441:107–111[CrossRef]
    [Google Scholar]
  42. VanValkenburgh C., Chen X., Mullins C., Fang H., Green N.. 1999).The; catalytic mechanism of endoplasmic reticulum signal peptidase appears to be distinct from most eubacterial signal peptidases. J Biol Chem274:11519–11525[CrossRef]
    [Google Scholar]
  43. von Heijne G.. 1983; Patterns of amino acids near signal sequence cleavage sites. Eur J Biochem133:17–21[CrossRef]
    [Google Scholar]
  44. Woese C. R., Kandler O., Wheelis M. L.. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Prot Natl Acad Sci U S A87:4576–4579[CrossRef]
    [Google Scholar]
  45. Yamasaki A., Eimer S., Okochi M., Smialowska A., Kaether C., Baumeister R., Haass C., Steiner H.. 2006; The GxGD motif of presenilin contributes to catalytic function and substrate identification of γ -secretase. J Neurosci26:3821–3828[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003087-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003087-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error