1887

Abstract

The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial cytoplasmic membranes. The Tat system of consists of TatA, TatB and TatC, unlike most Gram-positive bacteria, which only have TatA and TatC subunits. Interestingly, in TatA and TatB are localized in both the cytoplasm and the membrane. In the cytoplasm soluble TatA and TatB were found as monomers or as part of a hetero-oligomeric complex. Further analysis showed that specific information for recognition of the precursor by the soluble Tat components is mainly present in the twin-arginine signal peptide. Study of the role of the Tat subunits in complex assembly and stability in the membrane and cytoplasm showed that TatB stabilizes TatC whereas a key role in driving Tat complex assembly is suggested for TatC. Finally, by analysis of the oligomeric properties of TatA in the membrane of and study of the affinity of membrane-embedded TatA for Tat/Sec precursors, a role for TatA as a translocator is postulated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003053-0
2007-04-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1087.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003053-0&mimeType=html&fmt=ahah

References

  1. Alami M., Luke I., Deitermann S., Eisner G., Koch H., Brunner J., Muller M. 2003; Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli . Mol Cell 12:937–946 [CrossRef]
    [Google Scholar]
  2. Anné J., Van Mellaert L., Eyssen H. 1990; Optimum conditions for efficient transformation of Streptomyces venezuelae protoplasts. Appl Microbiol Biotechnol 32:431–435 [CrossRef]
    [Google Scholar]
  3. De Keersmaeker S., Van Mellaert L., Schaerlaekens K., Van Dessel W., Vrancken K., Lammertyn E., Geukens N., Anné J. 2005a; Structural organization of the twin-arginine translocation components in the Gram-positive Streptomyces lividans . FEBS Lett 579:797–802 [CrossRef]
    [Google Scholar]
  4. De Keersmaeker S., Van Mellaert L., Lammertyn E., Vrancken K., Geukens N., Anné J. 2005b; Functional analysis of TatA and TatB in Streptomyces lividans . Biochem Biophys Res Commun 335:973–982 [CrossRef]
    [Google Scholar]
  5. de Leeuw E., Granjon T., Porcelli I., Alami M., Carr S., Muller M., Sargent F., Palmer T., Berks B. 2002; Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes. J Mol Biol 322:1136–1146
    [Google Scholar]
  6. Geukens N., Lammertyn E., Van Mellaert L., Schacht S., Schaerlaekens K., Parro V., Bron S., Engelborghs Y., Mellado R., Anné J. 2001; Membrane topology of the Streptomyces lividans type I signal peptidases. J Bacteriol 183:4752–4760 [CrossRef]
    [Google Scholar]
  7. Geukens N., Rao C. V., S., Mellado R., Frederix F., Reekmans G., De Keersmaeker S., Vrancken K., Bonroy K., Van Mellaert L. other authors 2006; Analysis of type I signal peptidase specificity in Streptomyces lividans reveals competition for binding preprotein substrates. Microbiology 152:1441–1450 [CrossRef]
    [Google Scholar]
  8. Gohlke U., Pullan L., McDevitt C., Porcelli I., de Leeuw E., Palmer T., Saibil H., Berks B. 2005; The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci U S A 102:10482–10486 [CrossRef]
    [Google Scholar]
  9. Hicks M., Guymer D., Buchanan G., Widdick D., Caldelari I., Berks B., Palmer T. 2006; Formation of functional Tat translocases from heterologous components. BMC Microbiol 6:64 [CrossRef]
    [Google Scholar]
  10. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  11. Korn F., Kutzner H. J., Weingärtner B. 1978; A study of twenty actinophages: morphology, serological relationship and host range. In Genetics of the Actinomycetales pp 251–270 Edited by Freechsen E. Tarnak I., Thumin J. H. Stuttgart: Gustav Fischer;
    [Google Scholar]
  12. Lammertyn E. 2000; Isolation and characterisation of a novel subtilisin inhibitor gene from Streptomyces venezuelae and evaluation of its regulatory sequences for heterologous protein secretion by Streptomyces lividans . PhD thesis, KU Leuven; Belgium:
  13. Lammertyn E., Van Mellaert L., Schacht S., Dillen C., Sablon E., Van Broekhoven A., Anné J. 1997; Evaluation of a novel subtilisin inhibitor gene and mutant derivatives for the expression and secretion of mouse tumor necrosis factor alpha by Streptomyces lividans . Appl Environ Microbiol 63:1808–1813
    [Google Scholar]
  14. Lee P., Tullman-Ercek D., Georgiou G. 2006; The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60:373–395 [CrossRef]
    [Google Scholar]
  15. Oates J., Mathers J., Mangels D., Robinson C., Model K., Kühlbrandt W. 2003; Consensus structural features of purified bacterial TatABC complexes. J Mol Biol 330:277–286 [CrossRef]
    [Google Scholar]
  16. Pop O., Westermann M., Volker-Engert R., Schulz D., Lemke C., Schreiber S., Gerlach R., Wetzker R., Muller J. 2003; Sequence-specific binding of prePhoD to soluble TatAd indicates protein-mediated targeting of the Tat export in Bacillus subtilis . J Biol Chem 278:38428–38436 [CrossRef]
    [Google Scholar]
  17. Robinson C., Bolhuis A. 2004; Tat-dependent protein targeting in prokaryotes and chloroplasts. Biochim Biophys Acta 1694:135–147 [CrossRef]
    [Google Scholar]
  18. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Sargent F., Stanley N., Berks B., Palmer T. 1999; Sec-independent protein translocation in Escherichia coli : a distinct and pivotal role for the TatB protein. J Biol Chem 274:36073–36082 [CrossRef]
    [Google Scholar]
  20. Schaerlaekens K., Lammertyn E., Geukens N., Van Mellaert L., Schierová M., Anné J. 2001; Twin-arginine translocation pathway in Streptomyces lividans . J Bacteriol 183:6727–6732 [CrossRef]
    [Google Scholar]
  21. Schaerlaekens K., Van Mellaert L., Lammertyn E., Geukens N., Anné J. 2004; The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology 150:21–31 [CrossRef]
    [Google Scholar]
  22. Schreiber S., Stengel R., Westermann M., Volckmer-Engert R., Pop O., Muller J. 2006; Affinity of TatCd for TatAd elucidates its receptor function in the Bacillus subtilis twin arginine translocation (Tat) translocase system. J Biol Chem 281:19977–19984 [CrossRef]
    [Google Scholar]
  23. Studier F., Rosenberg A., Dunn J., Dubendorff J. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–99
    [Google Scholar]
  24. Van Mellaert L., Dillen C., Proost P., Sablon E., Deleys R., Van Broekhoven A., Heremans H., Van Damme J., Eyssen H., Anné J. 1994; Efficient secretion of biologically active mouse tumor necrosis factor alpha by Streptomyces lividans . Gene 150:153–158 [CrossRef]
    [Google Scholar]
  25. Ward J., Janssen G., Kieser T., Bibb M., Buttner M., Hopwood D. 1986; Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203:468–478 [CrossRef]
    [Google Scholar]
  26. Westermann M., Pop O., Gerlach R., Appel T., Schreiber S., Muller J., Schlörmann W. 2006; The TatAd component of Bacillus subtilis twin-arginine protein transport system forms homo-multimeric complexes in its cytosolic and membrane embedded localisation. Biochim Biophys Acta 1758443–451 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.2006/003053-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003053-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error