1887

Abstract

The catalase gene of the medicinal leech symbiont bv. sobria was cloned, sequenced, and functionally characterized. Southern hybridization, using an -specific hybridization probe, suggested the presence of a single gene copy in many species. consisted of 1446 nt encoding a protein with a high degree of similarity to the small-subunit group III bacterial catalases. A catalase-null mutant (JG186) was constructed through gene-replacement mutagenesis. In the parent strain (HM21R), catalase activity was only detected in extracts of cells grown to early exponential phase following HO induction, in which the ability to induce activity was inversely related to optical density. In contrast, induced JG186 cells were very sensitive to oxidative stress, with survival being affected even at low HO concentrations. In contrast to the findings of previous reports of other symbiotic systems, the catalase mutant was not defective in its ability to competitively colonize or persist within its host, in both co-inoculation and sole-colonization assays. This body of evidence suggests either that oxidative stress, in the form of HO exposure, is not encountered by the microbial partner under the examined symbiotic conditions or that compensatory mechanisms exist. The data suggest that although many colonization factors reoccur, each symbiotic system has also evolved specific mechanisms that affect symbiont–host dynamics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003020-0
2007-06-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1897.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003020-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Zhang J., Zhang Z., Miller W., Lipman D. J., Schäffer A. A.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  2. Apakupakul K., Siddall M. E., Burreson E. M.. 1999; Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. Mol Phylogenet Evol12:350–359[CrossRef]
    [Google Scholar]
  3. Barnes A. C., Bowden T. J., Horne M. T., Ellis A. E.. 1999; Peroxide-inducible catalase in Aeromonas salmonicida subsp. salmonicida protects against exogenous hydrogen peroxide and killing by activated rainbow trout, Oncorhynchus mykiss L., macrophages. Microb Pathog26:149–158[CrossRef]
    [Google Scholar]
  4. Beers R. F., Sizer I. W.. 1952; A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem195:133–140
    [Google Scholar]
  5. Bohannon D. E., Connell N., Keener J., Tormo A., Espinosa-Urgel M., Zambrano M. M., Kolter R.. 1991; Stationary-phase-inducible ‘gearbox’ promoters: differential effects of katF mutations and role of sigma 70. J Bacteriol173:4482–4492
    [Google Scholar]
  6. Cabiscol E., Tamarit J., Ros J.. 2000; Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol3:3–8
    [Google Scholar]
  7. de Eguileor M., Tettamanti G., Grimaldi A., Boselli A., Scari G., Valvassori R., Cooper E. L., Lanzavecchia G.. 1999; Histopathological changes after induced injury in leeches. J Invertebr Pathol74:14–28[CrossRef]
    [Google Scholar]
  8. de Eguileor M., Grimaldi A., Tettamanti G., Valvassori R., Cooper E. L., Lanzavecchia G.. 2000a; Lipopolysaccharide-dependent induction of leech leukocytes that cross-react with vertebrate cellular differentiation markers. Tissue Cell32:437–445[CrossRef]
    [Google Scholar]
  9. de Eguileor M., Grimaldi A., Tettamanti G., Valvassori R., Cooper E. L., Lanzavecchia G.. 2000b; Different types of response to foreign antigens by leech leukocytes. Tissue Cell32:40–48[CrossRef]
    [Google Scholar]
  10. DeShazer D., Wood G. E., Friedman R. L.. 1994; Molecular characterization of catalase from Bordetella pertussis : identification of the katA promoter in an upstream insertion sequence. Mol Microbiol14:123–130[CrossRef]
    [Google Scholar]
  11. Forman H. J., Torres M.. 2002; Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med166:S4–S8[CrossRef]
    [Google Scholar]
  12. Franzon V. L., Arondel J., Sansonetti P. J.. 1990; Contribution of superoxide dismutase and catalase activities to Shigella flexneri pathogenesis. Infect Immun58:529–535
    [Google Scholar]
  13. Gonzalez-Flecha B., Demple B.. 1995; Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem270:13681–13687[CrossRef]
    [Google Scholar]
  14. Graf J.. 1999; Symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis , the medicinal leech: a novel model for digestive tract associations. Infect Immun67:1–7
    [Google Scholar]
  15. Graf J.. 2002; The effects of symbionts on the physiology of Hirudo medicinalis , the medicinal leech. Invertebr Reprod Dev41:269–275[CrossRef]
    [Google Scholar]
  16. Graf J., Kikuchi Y., Rio R. V.. 2006; Leeches and their microbiota: naturally simple symbiosis models. Trends Microbiol14:365–371[CrossRef]
    [Google Scholar]
  17. Hassett D. J., Cohen M. S.. 1989; Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. FASEB J3:2574–2582
    [Google Scholar]
  18. Indergand S., Graf J.. 2000; Ingested blood contributes to the specificity of the symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis , the medicinal leech. Appl Environ Microbiol66:4735–4741[CrossRef]
    [Google Scholar]
  19. Janda J. M., Abbott S. L.. 1998; Evolving concepts regarding the genus Aeromonas : an expanding panorama of species, disease presentations, and unanswered questions. Clin Infect Dis27:332–344[CrossRef]
    [Google Scholar]
  20. Johnston R. B. Jr, Kitagawa S.. 1985; Molecular basis for the enhanced respiratory burst of activated macrophages. Fed Proc44:2927–2932
    [Google Scholar]
  21. Kikuchi Y., Graf J.. 2007; Spatial and temporal population dynamics of a naturally-occurring, two-species microbial community inside the digestive-tract of the medicinal leech. Appl Environ Microbiol73:1984–1991[CrossRef]
    [Google Scholar]
  22. Klotz M. G., Klassen G. R., Loewen P. C.. 1997; Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol Biol Evol14:951–958[CrossRef]
    [Google Scholar]
  23. Loewen P. C.. 1997; Bacterial catalases. In Oxidative Stress and the Molecular Biology of Antioxidant Defenses pp273–308 Edited by Scandalios J. G.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. 1951; Protein measurement with the folin phenol reagent. J Biol Chem193:265–275
    [Google Scholar]
  25. Mandell G. L.. 1975; Catalase, superoxide, dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal-leukocyte interaction. J Clin Invest55:561–566[CrossRef]
    [Google Scholar]
  26. Morales V. M., Backman A., Bagdasarian M.. 1991; A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene97:39–47[CrossRef]
    [Google Scholar]
  27. Nelson K., Selander R. K.. 1994; Analysis of genetic variation by polymerase chain reaction-based nucleotide sequencing. In Bacterial Pathogenesis, Part A, Identification and Regulation of Virulence Factors pp174–183 Edited by Clark V. L., Bavoil P. M.. San Diego, CA: Academic Press;
    [Google Scholar]
  28. Park J. B.. 2003; Phagocytosis induces superoxide formation and apoptosis in macrophages. Exp Mol Med35:325–335[CrossRef]
    [Google Scholar]
  29. Ramos-Gonzalez M. I., Molin S.. 1998; Cloning, sequencing, and phenotypic characterization of the rpoS gene from Pseudomonas putida KT2440. J Bacteriol180:3421–3431
    [Google Scholar]
  30. Rio R. V., Wu Y., Filardo G., Aksoy S.. 2006; Dynamics of multiple symbiont density regulation during host development: tsetse fly and its microbial flora. Proc Biol Sci273:805–814[CrossRef]
    [Google Scholar]
  31. Ruby E. G., McFall-Ngai M. J.. 1999; Oxygen-utilizing reactions and symbiotic colonization of the squid light organ by Vibrio fischeri. Trends Microbiol7:414–420[CrossRef]
    [Google Scholar]
  32. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Santos R., Herouart D., Sigaud S., Touati D., Puppo A.. 2001; Oxidative burst in alfalfa– Sinorhizobium meliloti symbiotic interaction. Mol Plant Microbe Interact14:86–89[CrossRef]
    [Google Scholar]
  34. Seshadri R., Joseph S. W., Chopra A. K., Sha J., Shaw J., Graf J., Haft D., Wu M., Ren Q.. other authors 2006; Genome sequence of Aeromonas hydrophila ATCC 7966T: the jack of all trades. J Bacteriol188:8272–8282[CrossRef]
    [Google Scholar]
  35. Siddall M. E., Burreson E. M.. 1998; Phylogeny of leeches (Hirudinea) based on mitochondrial cytochrome c oxidase subunit I. Mol Phylogenet Evol9:156–162[CrossRef]
    [Google Scholar]
  36. Siddall M. E., Apakupakul K., Burreson E. M., Coates K. A., Erseus C., Gelder S. R., Kallersjo M., Trapido-Rosenthal H.. 2001; Validating Livanow: molecular data agree that leeches, Branchiobdellidans, and Acanthobdella peledina form a monophyletic group of oligochaetes. Mol Phylogenet Evol21:346–351[CrossRef]
    [Google Scholar]
  37. Simon R., Priefer U., Puhler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology1:784–791[CrossRef]
    [Google Scholar]
  38. Skorupski K., Taylor R. K.. 1996; Positive selection vectors for allelic exchange. Gene169:47–52[CrossRef]
    [Google Scholar]
  39. Soler L., Yanez M. A., Chacon M. R., Aguilera-Arreola M. G., Catalan V., Figueras M. J., Martinez-Murcia A. J.. 2004; Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes. Int J Syst Evol Microbiol54:1511–1519[CrossRef]
    [Google Scholar]
  40. Trontelj P., Utevsky S. Y.. 2005; Celebrity with a neglected taxonomy: molecular systematics of the medicinal leech (genus Hirudo. Mol Phylogenet Evol34:616–624[CrossRef]
    [Google Scholar]
  41. Visick K. L., Ruby E. G.. 1998; The periplasmic, group III catalase of Vibrio fischeri is required for normal symbiotic competence and is induced both by oxidative stress and by approach to stationary phase. J Bacteriol180:2087–2092
    [Google Scholar]
  42. Worthen P. L., Gode C. J., Graf J.. 2006; Culture-independent characterization of the digestive-tract microbiota of the medicinal leech reveals a tripartite symbiosis. Appl Environ Microbiol72:4775–4781[CrossRef]
    [Google Scholar]
  43. Yanez M. A., Catalan V., Apraiz D., Figueras M. J., Martinez-Murcia A. J.. 2003; Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences. Int J Syst Evol Microbiol53:875–883[CrossRef]
    [Google Scholar]
  44. Yildiz F. H., Schoolnik G. K.. 1998; Role of rpo S in stress survival and virulence of Vibrio cholerae. J Bacteriol180:773–784
    [Google Scholar]
  45. Zheng H. Y., Hassett D. J., Bean K., Cohen M. S.. 1992; Regulation of catalase in Neisseria gonorrhoeae . Effects of oxidant stress and exposure to human neutrophils. J Clin Invest90:1000–1006[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003020-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003020-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error