Characterization of the hypothetical protein Cpn1027, a newly identified inclusion membrane protein unique to Free

Abstract

The hypothetical protein Cpn1027 was detected in the inclusion membrane of -infected cells with antibodies raised with Cpn1027 fusion proteins in an indirect immunofluorescence assay. The inclusion membrane staining by the anti-Cpn1027 antibodies co-localized with the staining of an antibody recognizing a known inclusion membrane protein designated IncA and these membrane stainings were blocked by the corresponding but not irrelevant fusion proteins. Although Cpn1027 was not predicted to be an inclusion membrane protein, it contained a bi-lobed hydrophobic domain region at its N-terminus, a signature secondary structural motif possessed by most chlamydial inclusion membrane proteins. The Cpn1027 protein was detected as early as 12 h after infection and remained in the inclusion membrane throughout the rest of the infection cycle. Cytosolic expression of Cpn1027 via a transgene failed to affect the subsequent chlamydial infection. The anti-Cpn1027 polyclonal antisera failed to detect any significant signals in cells infected with chlamydial species other than , which is consistent with the sequence analysis result that no significant homologues of Cpn1027 were found in any other species. These experiments together have demonstrated that Cpn1027 is a newly identified inclusion membrane protein unique to .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002956-0
2007-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/777.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002956-0&mimeType=html&fmt=ahah

References

  1. Alzhanov D., Barnes J., Hruby D. E., Rockey D. D. 2004; Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA . BMC Microbiol 4:24 [CrossRef]
    [Google Scholar]
  2. Bannantine J. P., Rockey D. D., Hackstadt T. 1998; Tandem genes of Chlamydia psittaci that encode proteins localized to the inclusion membrane. Mol Microbiol 28:1017–1026 [CrossRef]
    [Google Scholar]
  3. Bannantine J. P., Griffiths R. S., Viratyosin W., Brown W. J., Rockey D. D. 2000; A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Cell Microbiol 2:35–47 [CrossRef]
    [Google Scholar]
  4. Campbell L. A., Kuo C. C. 2004; Chlamydia pneumoniae – an infectious risk factor for atherosclerosis?. Nat Rev Microbiol 2:23–32 [CrossRef]
    [Google Scholar]
  5. Campbell L. A., Nosaka T., Rosenfeld M. E., Yaraei K., Kuo C. C. 2005; Tumor necrosis factor alpha plays a role in the acceleration of atherosclerosis by Chlamydia pneumoniae in mice. Infect Immun 73:3164–3165 [CrossRef]
    [Google Scholar]
  6. Carabeo R. A., Mead D. J., Hackstadt T. 2003; Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci U S A 100:6771–6776 [CrossRef]
    [Google Scholar]
  7. Chen C., Chen D., Sharma J., Cheng W., Zhong Y., Liu K., Jensen J., Shain R., Arulanandam B., Zhong G. 2006; The hypothetical protein CT813 is localized in the Chlamydia trachomatis inclusion membrane and is immunogenic in women urogenitally infected with C. trachomatis . Infect Immun 74:4826–4840 [CrossRef]
    [Google Scholar]
  8. Delevoye C., Nilges M., Dautry-Varsat A., Subtil A. 2004; Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae : oligomerization of IncA mediates interaction between facing membranes. J Biol Chem 279:46896–46906 [CrossRef]
    [Google Scholar]
  9. Dong F., Pirbhai M., Xiao Y., Zhong Y., Wu Y., Zhong G. 2005; Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis -infected cells. Infect Immun 73:1861–1864 [CrossRef]
    [Google Scholar]
  10. Dong F., Zhong Y., Arulanandam B., Zhong G. 2005; Production of a proteolytically active protein, chlamydial protease/proteasome-like activity factor, by five different Chlamydia species. Infect Immun 73:1868–1872 [CrossRef]
    [Google Scholar]
  11. Fan P., Dong F., Huang Y., Zhong G. 2002; Chlamydia pneumoniae secretion of a protease-like activity factor for degrading host cell transcription factors required for [correction of factors is required for] major histocompatibility complex antigen expression. Infect Immun 70:345–349 [CrossRef]
    [Google Scholar]
  12. Fan T., Lu H., Hu H., Shi L., McClarty G. A., Nance D. M., Greenberg A. H., Zhong G. 1998; Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 187:487–496 [CrossRef]
    [Google Scholar]
  13. Fling S. P., Sutherland R. A., Steele L. N., Hess B., D'Orazio S. E., Maisonneuve J., Lampe M. F., Probst P., Starnbach M. N. 2001; CD8+ T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis . Proc Natl Acad Sci U S A 98:1160–1165 [CrossRef]
    [Google Scholar]
  14. Grayston J. T. 1992; Chlamydia pneumoniae , strain TWAR pneumonia. Annu Rev Med 43:317–323 [CrossRef]
    [Google Scholar]
  15. Greene W., Xiao Y., Huang Y., McClarty G., Zhong G. 2004; Chlamydia-infected cells continue to undergo mitosis and resist induction of apoptosis. Infect Immun 72:451–460 [CrossRef]
    [Google Scholar]
  16. Hackstadt T. 1998; The diverse habitats of obligate intracellular parasites. Curr Opin Microbiol 1:82–87 [CrossRef]
    [Google Scholar]
  17. Hackstadt T., Scidmore M. A., Rockey D. D. 1995; Lipid metabolism in Chlamydia trachomatis -infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci U S A 92:4877–4881 [CrossRef]
    [Google Scholar]
  18. Hackstadt T., Rockey D. D., Heinzen R. A., Scidmore M. A. 1996; Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15:964–977
    [Google Scholar]
  19. Hackstadt T., Fischer E. R., Scidmore M. A., Rockey D. D., Heinzen R. A. 1997; Origins and functions of the chlamydial inclusion. Trends Microbiol 5:288–293 [CrossRef]
    [Google Scholar]
  20. Hackstadt T., Scidmore-Carlson M. A., Shaw E. I., Fischer E. R. 1999; The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Microbiol 1:119–130 [CrossRef]
    [Google Scholar]
  21. Hu H., Pierce G. N., Zhong G. 1999; The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae . J Clin Invest 103:747–753 [CrossRef]
    [Google Scholar]
  22. Kalman S., Mitchell W., Marathe R., Lammel C., Fan J., Hyman R. W., Olinger L., Grimwood J., Davis R. W., Stephens R. S. 1999; Comparative genomes of Chlamydia pneumoniae and C. trachomatis . Nat Genet 21:385–389 [CrossRef]
    [Google Scholar]
  23. Kuo C. C., Grayston J. T., Campbell L. A., Goo Y. A., Wissler R. W., Benditt E. P. 1995a; Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15–34 years old. Proc Natl Acad Sci U S A 92:6911–6914 [CrossRef]
    [Google Scholar]
  24. Kuo C. C., Jackson L. A., Campbell L. A., Grayston J. T. 1995b; Chlamydia pneumoniae (TWAR. Clin Microbiol Rev 8:451–461
    [Google Scholar]
  25. Kuo C. C., Campbell L. A., Rosenfeld M. E. 2002; Chlamydia pneumoniae infection and atherosclerosis: methodological considerations. Circulation 105:E34
    [Google Scholar]
  26. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [CrossRef]
    [Google Scholar]
  27. Liu L., Hu H., Ji H., Murdin A. D., Pierce G. N., Zhong G. 2000; Chlamydia pneumoniae infection significantly exacerbates aortic atherosclerosis in an LDLR−/− mouse model within six months. Mol Cell Biochem 215:123–128 [CrossRef]
    [Google Scholar]
  28. Read T. D., Brunham R. C., Shen C., Gill S. R., Heidelberg J. F., White O., Hickey E. K., Peterson J., Utterback T. other authors 2000; Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28:1397–1406 [CrossRef]
    [Google Scholar]
  29. Rockey D. D., Heinzen R. A., Hackstadt T. 1995; Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells. Mol Microbiol 15:617–626
    [Google Scholar]
  30. Rockey D. D., Scidmore M. A., Bannantine J. P., Brown W. J. 2002; Proteins in the chlamydial inclusion membrane. Microbes Infect 4:333–340 [CrossRef]
    [Google Scholar]
  31. Scidmore M. A., Fischer E. R., Hackstadt T. 1996; Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol 134:363–374 [CrossRef]
    [Google Scholar]
  32. Sharma J., Niu Y., Ge J., Pierce G. N., Zhong G. 2004; Heat-inactivated C. pneumoniae organisms are not atherogenic. Mol Cell Biochem 260:147–152 [CrossRef]
    [Google Scholar]
  33. Sharma J., Dong F., Pirbhai M., Zhong G. 2005; Inhibition of proteolytic activity of a chlamydial proteasome/protease-like activity factor by antibodies from humans infected with Chlamydia trachomatis . Infect Immun 73:4414–4419 [CrossRef]
    [Google Scholar]
  34. Sharma J., Zhong Y., Dong F., Piper J. M., Wang G., Zhong G. 2006; Profiling of human antibody responses to Chlamydia trachomatis urogenital tract infection using microplates arrayed with 156 chlamydial fusion proteins. Infect Immun 74:1490–1499 [CrossRef]
    [Google Scholar]
  35. Shaw A. C., Vandahl B. B., Larsen M. R., Roepstorff P., Gevaert K., Vandekerckhove J., Christiansen G., Birkelund S. 2002; Characterization of a secreted Chlamydia protease . Cell Microbiol 4:411–424 [CrossRef]
    [Google Scholar]
  36. Su H., McClarty G., Dong F., Hatch G. M., Pan Z. K., Zhong G. 2004; Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J Biol Chem 279:9409–9416 [CrossRef]
    [Google Scholar]
  37. Subtil A., Parsot C., Dautry-Varsat A. 2001; Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery. Mol Microbiol 39:792–800 [CrossRef]
    [Google Scholar]
  38. Subtil A., Delevoye C., Balana M. E., Tastevin L., Perrinet S., Dautry-Varsat A. 2005; A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates. Mol Microbiol 56:1636–1647 [CrossRef]
    [Google Scholar]
  39. Toh H., Miura K., Shirai M., Hattori M. 2003; In silico inference of inclusion membrane protein family in obligate intracellular parasites chlamydiae. DNA Res 10:9–17 [CrossRef]
    [Google Scholar]
  40. Vandahl B. B., Stensballe A., Roepstorff P., Christiansen G., Birkelund S. 2005; Secretion of Cpn0796 from Chlamydia pneumoniae into the host cell cytoplasm by an autotransporter mechanism. Cell Microbiol 7:825–836 [CrossRef]
    [Google Scholar]
  41. Xiao Y., Zhong Y., Greene W., Dong F., Zhong G. 2004; Chlamydia trachomatis infection inhibits both Bax and Bak activation induced by staurosporine. Infect Immun 72:5470–5474 [CrossRef]
    [Google Scholar]
  42. Xiao Y., Zhong Y., Su H., Zhou Z., Chiao P., Zhong G. 2005; NF-kappa B activation is not required for Chlamydia trachomatis inhibition of host epithelial cell apoptosis. J Immunol 174:1701–1708 [CrossRef]
    [Google Scholar]
  43. Zhong G., Toth I., Reid R., Brunham R. C. 1993; Immunogenicity evaluation of a lipidic amino acid-based synthetic peptide vaccine for Chlamydia trachomatis . J Immunol 151:3728–3736
    [Google Scholar]
  44. Zhong G., Berry J., Brunham R. C. 1994; Antibody recognition of a neutralization epitope on the major outer membrane protein of Chlamydia trachomatis . Infect Immun 62:1576–1583
    [Google Scholar]
  45. Zhong G., Germain R. N., Reis e Sousa C. 1997; Production, specificity, and functionality of monoclonal antibodies to specific peptide-major histocompatibility complex class II complexes formed by processing of exogenous protein. Proc Natl Acad Sci U S A 94:13856–13861 [CrossRef]
    [Google Scholar]
  46. Zhong G., Fan P., Ji H., Dong F., Huang Y. 2001; Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J Exp Med 193:935–942 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002956-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002956-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed