1887

Abstract

The RcsCDB phosphorelay was originally identified as the main regulator of colanic acid biosynthesis in K-12. However, recent transcriptomic analyses have identified more than 150 genes belonging to the Rcs regulon, including , , and . These genes are clustered on the genome and oriented in the same direction but their function remains unknown. In this work it is shown that , , and are transcribed as a single operon and it is confirmed that the expression of this operon is controlled by the Rcs phosphorelay, in a manner that is dependent on the auxiliary regulatory protein RcsA. Interestingly, Northern blot analysis revealed that the amount of transcripts in the cell is higher than the amount of transcripts and it is proposed that this differential expression is mediated by the presence of a strong stem–loop structure in the - intergenic region. Finally, evidence is provided that the overexpression of affects colony morphology and leads to the production of an extracellular polysaccharide that binds Congo red and toluidine blue-O.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002907-0
2007-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1070.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002907-0&mimeType=html&fmt=ahah

References

  1. Amann, E., Ochs, B. & Abel, K. J. ( 1988; ). Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69, 301–315.[CrossRef]
    [Google Scholar]
  2. Bik, E. M., Bunschoten, A. E., Willems, R. J., Chang, A. C. & Mooi, F. R. ( 1996; ). Genetic organization and functional analysis of the otn DNA essential for cell-wall polysaccharide synthesis in Vibrio cholerae O139. Mol Microbiol 20, 799–811.[CrossRef]
    [Google Scholar]
  3. Blumenkrantz, N. & Asboe-Hansen, G. ( 1973; ). New method for quantitative determination of uronic acids. Anal Biochem 54, 484–489.[CrossRef]
    [Google Scholar]
  4. Boulanger, A., Francez-Charlot, A., Conter, A., Castanié-Cornet, M. P., Cam, K. & Gutierrez, C. ( 2005; ). Multistress regulation in Escherichia coli: expression of osmB involves two independent promoters responding either to sigmaS or to the RcsCDB His-Asp phosphorelay. J Bacteriol 187, 3282–3286.[CrossRef]
    [Google Scholar]
  5. Bradford, M. N. ( 1976; ). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  6. Carballes, F., Bertrand, C., Bouché, J. P. & Cam, K. ( 1999; ). Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system RcsC-RcsB. Mol Microbiol 34, 442–450.[CrossRef]
    [Google Scholar]
  7. Castanié-Cornet, M. P., Cam, K. & Jacq, A. ( 2006; ). RcsF is an outer membrane lipoprotein involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli. J Bacteriol 188, 4264–4270.[CrossRef]
    [Google Scholar]
  8. Clarke, D. J., Holland, I. B. & Jacq, A. ( 1997; ). Point mutations in the transmembrane domain of DjIA, a membrane-linked DnaJ-like protein, abolish its function in promoting colanic acid production via the Rcs signal transduction pathway. Mol Microbiol 25, 933–944.[CrossRef]
    [Google Scholar]
  9. Clarke, D. J., Joyce, S. A., Toutain, C. M., Jacq, A. & Holland, I. B. ( 2002; ). Genetic analysis of the RcsC sensor kinase from Escherichia coli K-12. J Bacteriol 184, 1204–1208.[CrossRef]
    [Google Scholar]
  10. Danese, P. N., Pratt, L. A. & Kolter, R. ( 2000a; ). Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182, 3593–3596.[CrossRef]
    [Google Scholar]
  11. Danese, P. N., Pratt, L. A., Dove, S. L. & Kolter, R. ( 2000b; ). The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol Microbiol 37, 424–432.[CrossRef]
    [Google Scholar]
  12. Da Re, S. & Ghigo, J. M. ( 2006; ). A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli. J Bacteriol 188, 3073–3087.[CrossRef]
    [Google Scholar]
  13. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  14. Davalos-Garcia, M., Conter, A., Toesca, I., Gutierrez, C. & Cam, K. ( 2001; ). Regulation of osmC gene expression by the two-component system RcsB-RcsC in Escherichia coli. J Bacteriol 183, 5870–5876.[CrossRef]
    [Google Scholar]
  15. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. ( 1956; ). Colorimetric method for determination of sugars and related substances. Anal Chem 28, 350–356.[CrossRef]
    [Google Scholar]
  16. Ferrières, L. & Clarke, D. J. ( 2003; ). The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol 50, 1665–1682.[CrossRef]
    [Google Scholar]
  17. Francez-Charlot, A., Laugel, B., Van Gemert, A., Dubarry, N., Wiorowski, F., Castanié-Cornet, M. P., Gutierrez, C. & Cam, K. ( 2003; ). RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49, 823–832.
    [Google Scholar]
  18. Hagiwara, D., Sugiura, M., Oshima, T., Mori, H., Aiba, H., Yamashino, T. & Mizuno, T. ( 2003; ). Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 185, 5735–5746.[CrossRef]
    [Google Scholar]
  19. Hammar, M., Arnqvist, A., Bian, Z., Olsen, A. & Normark, S. ( 1995; ). Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18, 661–670.[CrossRef]
    [Google Scholar]
  20. Hasman, H., Schembri, M. A. & Klemm, P. ( 2000; ). Antigen 43 and type 1 fimbriae determine colony morphology of Escherichia coli K-12. J Bacteriol 182, 1089–1095.[CrossRef]
    [Google Scholar]
  21. Herzberg, M., Kaye, I. K., Peti, W. & Wood, T. K. ( 2006; ). YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J Bacteriol 188, 587–598.[CrossRef]
    [Google Scholar]
  22. Huang, Y. H., Ferrières, L. & Clarke, D. J. ( 2006; ). The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol 157, 206–212.[CrossRef]
    [Google Scholar]
  23. Ilan, O., Bloch, Y., Frankel, G., Ullrich, H., Geider, K. & Rosenshine, I. ( 1999; ). Protein tyrosine kinases in bacterial pathogens are associated with virulence and production of exopolysaccharide. EMBO J 18, 3241–3248.[CrossRef]
    [Google Scholar]
  24. Joyce, S. A. & Clarke, D. J. ( 2003; ). A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Mol Microbiol 47, 1445–1457.[CrossRef]
    [Google Scholar]
  25. Majdalani, N. & Gottesman, S. ( 2005; ). The Rcs phosphorelay: a complex signal transduction. Annu Rev Microbiol 59, 379–405.[CrossRef]
    [Google Scholar]
  26. Majdalani, N., Hernandez, D. & Gottesman, S. ( 2002; ). Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 46, 813–826.[CrossRef]
    [Google Scholar]
  27. Majdalani, N., Heck, M., Stout, V. & Gottesman, S. ( 2005; ). Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli. J Bacteriol 187, 6770–6778.[CrossRef]
    [Google Scholar]
  28. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  29. Nelson, N. ( 1944; ). A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153, 375–380.
    [Google Scholar]
  30. Peleg, A., Shifrin, Y., Ilan, O., Nadler-Yona, C., Nov, S., Koby, S., Baruch, K., Altuvia, S., Elgrably-Weiss, M. & other authors ( 2005; ). Identification of an Escherichia coli operon required for formation of the O-antigen capsule. J Bacteriol 187, 5259–5266.[CrossRef]
    [Google Scholar]
  31. Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Lejeune, P., Landini, P. & Dorel, C. ( 2001; ). Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183, 7213–7223.[CrossRef]
    [Google Scholar]
  32. Raivio, T. L., Popkin, D. L. & Silhavy, T. J. ( 1999; ). The Cpx envelope stress response is controlled by amplification and feedback inhibition. J Bacteriol 181, 5263–5272.
    [Google Scholar]
  33. Rondle, C. J. M. & Morgan, W. T. J. ( 1955; ). The determination of glucosamine and galactosamine. Biochem J 61, 586–589.
    [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Schembri, M. A., Dalsgaard, D. & Klemm, P. ( 2004; ). Capsule shields the function of short bacterial adhesins. J Bacteriol 186, 1249–1257.[CrossRef]
    [Google Scholar]
  36. Sharples, G. J. & Lloyd, R. G. ( 1990; ). A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res 18, 6503–6508.[CrossRef]
    [Google Scholar]
  37. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. ( 2002; ). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187–209.[CrossRef]
    [Google Scholar]
  38. Stout, V. & Gottesman, S. ( 1990; ). RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol 172, 659–669.
    [Google Scholar]
  39. Stout, V., Torres-Cabassa, A., Maurizi, M. R., Gutnick, D. & Gottesman, S. ( 1991; ). RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J Bacteriol 173, 1738–1747.
    [Google Scholar]
  40. Sutherland, I. W. ( 1969; ). Structural studies on colanic acid, the common exopolysaccharide found in the Enterobacteriaceae, by partial acid hydrolysis. Biochem J 115, 935–945.
    [Google Scholar]
  41. Takeda, S., Fujisawa, Y., Matsubara, M., Aiba, H. & Mizuno, T. ( 2001; ). A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC→YojN→RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 40, 440–450.[CrossRef]
    [Google Scholar]
  42. Thomason, L. C., Bubunenko, M., Wilson, H. R., Costantino, N. & Court, D. L. ( 2003; ). Recombineering – genetic engineering in bacteria using homologous recombination. In Current Protocols in Molecular Biology, unit 1.16. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J.G. Seidman, J. A. Smith & K. Struhl. New York: Wiley.
  43. Vincent, C., Duclos, B., Grangeasse, C., Vaganay, E., Riberty, M., Cozzone, A. J. & Doublet, P. ( 2000; ). Relationship between exopolysaccharide production and protein-tyrosine phosphorylation in gram-negative bacteria. J Mol Biol 304, 311–321.[CrossRef]
    [Google Scholar]
  44. Wang, X., Preston, J. F., 3rd & Romeo, T. ( 2004; ). The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186, 2724–2734.[CrossRef]
    [Google Scholar]
  45. Wehland, M. & Bernhard, F. ( 2000; ). The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 275, 7013–7020.[CrossRef]
    [Google Scholar]
  46. Weiner, R., Seagren, E., Arnosti, C. & Quintero, E. ( 1999; ). Bacterial survival in biofilms: probes for exopolysaccharide and its hydrolysis, and measurements of intra- and interphase mass fluxes. Methods Enzymol 310, 403–426.
    [Google Scholar]
  47. Whitfield, C. ( 2006; ). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75, 39–68.[CrossRef]
    [Google Scholar]
  48. Whitfield, C. & Roberts, I. S. ( 1999; ). Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31, 1307–1319.[CrossRef]
    [Google Scholar]
  49. Wilson, L. A. & Sharp, P. M. ( 2006; ). Enterobacterial repetitive intergenic consensus (ERIC) sequences in Escherichia coli: evolution and implications for ERIC-PCR. Mol Biol Evol 23, 1156–1168.[CrossRef]
    [Google Scholar]
  50. Wimley, W. C. ( 2003; ). The versatile beta-barrel membrane protein. Curr Opin Struct Biol 13, 404–411.[CrossRef]
    [Google Scholar]
  51. Yu, D., Ellis, H. M., Lee, E., Jenkins, N. A., Copeland, N. G. & Court, D. L. ( 2000; ). An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97, 5978–5983.[CrossRef]
    [Google Scholar]
  52. Zhai, Y. & Saier, M. H., Jr ( 2002; ). The beta-barrel finder (BBF) program, allowing identification of outer membrane beta-barrel proteins encoded within prokaryotic genomes. Protein Sci 11, 2196–2207.
    [Google Scholar]
  53. Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. & Romling, U. ( 2001; ). The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39, 1452–1463.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002907-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002907-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error