1887

Abstract

The applicability of transcriptomics for functional genome analysis rests on the assumption that global information on gene function can be inferred from transcriptional regulation patterns. This study investigated whether genes that show a consistently higher transcript level under anaerobic than aerobic conditions do indeed contribute to fitness in the absence of oxygen. Tagged deletion mutants were constructed in 27 genes that showed a strong and consistent transcriptional upregulation under anaerobic conditions, irrespective of the nature of the growth-limiting nutrient (glucose, ammonia, sulfate or phosphate). Competitive anaerobic chemostat cultivation showed that only five out of the 27 mutants (Δ, izh2Δ, Δ, ylr413wΔ and yor012wΔ) conferred a significant disadvantage relative to a tagged reference strain. The implications of this study are that: (i) transcriptome analysis has a very limited predictive value for the contribution of individual genes to fitness under specific environmental conditions, and (ii) competitive chemostat cultivation of tagged deletion strains offers an efficient approach to select relevant leads for functional analysis studies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002873-0
2007-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/877.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002873-0&mimeType=html&fmt=ahah

References

  1. Andreassen, A. A. & Stier, T. J. B. ( 1953; ). Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Comp Physiol 41, 23–26.[CrossRef]
    [Google Scholar]
  2. Askwith, C. C., de Silva, D. & Kaplan, J. ( 1996; ). Molecular biology of iron acquisition in Saccharomyces cerevisiae. Mol Microbiol 20, 27–34.[CrossRef]
    [Google Scholar]
  3. Baganz, F., Hayes, A., Marren, D., Gardner, D. C. & Oliver, S. G. ( 1997; ). Suitability of replacement markers for functional analysis studies in Saccharomyces cerevisiae. Yeast 13, 1563–1573.[CrossRef]
    [Google Scholar]
  4. Baganz, F., Hayes, A., Farquhar, R., Butler, P. R., Gardner, D. C. & Oliver, S. G. ( 1998; ). Quantitative analysis of yeast gene function using competition experiments in continuous culture. Yeast 14, 1417–1427.[CrossRef]
    [Google Scholar]
  5. Barnett, V. & Lewis, T. ( 1994; ). Outliers in Statistical Data, 3rd edn. Chichester: Wiley.
  6. Birrell, G. W., Brown, J. A., Wu, H. I., Giaever, G., Chu, A. M., Davis, R. W. & Brown, J. M. ( 2002; ). Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. Proc Natl Acad Sci U S A 99, 8778–8783.[CrossRef]
    [Google Scholar]
  7. Boer, V. M., de Winde, J. H., Pronk, J. T. & Piper, M. D. W. ( 2003; ). The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, sulfur or phosphorus. J Biol Chem 278, 3265–3274.[CrossRef]
    [Google Scholar]
  8. Burke, D., Dawson, D. & Stearns, T. ( 2000; ). Methods in Yeast Genetics: Edition 2000. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  9. Button, D. K. ( 1991; ). Biochemical basis for whole-cell uptake kinetics – specific affinity, oligotrophic capacity, and the meaning of the Michaelis constant. Appl Environ Microbiol 57, 2033–2038.
    [Google Scholar]
  10. Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., Lee, T. I., True, H. L., Lander, E. S. & Young, R. A. ( 2001; ). Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12, 323–337.[CrossRef]
    [Google Scholar]
  11. Chao, L. & McBroom, S. M. ( 1985; ). Evolution of transposable elements: an IS10 insertion increases fitness in Escherichia coli. Mol Biol Evol 2, 359–369.
    [Google Scholar]
  12. Colson, I., Delneri, D. & Oliver, S. G. ( 2004; ). Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae. EMBO Rep 5, 392–398.[CrossRef]
    [Google Scholar]
  13. Daran-Lapujade, P., Jansen, M. L. A., Daran, J. M., van Gulik, W., de Winde, J. H. & Pronk, J. T. ( 2004; ). Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae, a chemostat culture study. J Biol Chem 278, 3265–3274.
    [Google Scholar]
  14. Dean, A. M. ( 1989; ). Selection and neutrality in lactose operons of Escherichia coli. Genetics 123, 441–454.
    [Google Scholar]
  15. Dean, A. M., Dykhuizen, D. E. & Hartl, D. L. ( 1988; ). Fitness effects of amino acid replacements in the beta-galactosidase of Escherichia coli. Mol Biol Evol 5, 469–485.
    [Google Scholar]
  16. Diehn, M., Eisen, M. B., Botstein, D. & Brown, P. O. ( 2000; ). Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat Genet 25, 58–62.[CrossRef]
    [Google Scholar]
  17. Drgon, T., Sabova, L., Gavurnikova, G. & Kolarov, J. ( 1992; ). Yeast ADP/ATP carrier (AAC) proteins exhibit similar enzymatic properties but their deletion produces different phenotypes. FEBS Lett 304, 277–280.[CrossRef]
    [Google Scholar]
  18. Fuchslin, H. P., Ruegg, I., Van Der Meer, J. R. & Egli, T. ( 2003; ). Effect of integration of a GFP reporter gene on fitness of Ralstonia eutropha during growth with 2,4-dichlorophenoxyacetic acid. Environ Microbiol 5, 878–887.[CrossRef]
    [Google Scholar]
  19. Fyrst, H., Oskouian, B., Kuypers, F. A. & Saba, J. D. ( 1999; ). The PLB2 gene of Saccharomyces cerevisiae confers resistance to lysophosphatidylcholine and encodes a phospholipase B/lysophospholipase. Biochemistry 38, 5864–5871.[CrossRef]
    [Google Scholar]
  20. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D. & Brown, P. O. ( 2000; ). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11, 4241–4257.[CrossRef]
    [Google Scholar]
  21. Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A.-M. & other authors ( 2002; ). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147.[CrossRef]
    [Google Scholar]
  22. Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., Lucau-Danila, A., Anderson, K. & other authors ( 2002; ). Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.[CrossRef]
    [Google Scholar]
  23. Giaever, G., Flaherty, P., Kumm, J., Proctor, M., Nislow, C., Jaramillo, D. F., Chu, A. M., Jordan, M. I., Arkin, A. P. & Davis, R. W. ( 2004; ). Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci U S A 101, 793–798.[CrossRef]
    [Google Scholar]
  24. Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C. & other authors ( 1996; ). Life with 6000 genes. Science 274, 546–567.[CrossRef]
    [Google Scholar]
  25. Gu, Z., Steinmetz, L. M., Gu, X., Scharfe, C., Davis, R. W. & Li, W. H. ( 2003).; Role of duplicate genes in genetic robustness against null mutations. Nature 421 , 63 –66. [CrossRef]
    [Google Scholar]
  26. Guldener, U., Heck, S., Fielder, T., Beinhauer, J. & Hegemann, J. H. ( 1996; ). A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24, 2519–2524.[CrossRef]
    [Google Scholar]
  27. Hirschman, J. E., Balakrishnan, R., Christie, K. R., Costanzo, M. C., Dwight, S. S., Engel, S. R., Fisk, D. G., Hong, E. L., Livstone, M. S. & other authors ( 2006; ). Genome Snapshot: a new resource at the Saccharomyces Genome Database (SGD) presenting an overview of the Saccharomyces cerevisiae genome. Nucleic Acids Res 34, D442–D445.[CrossRef]
    [Google Scholar]
  28. Hohmann, S. & Cederberg, H. ( 1990; ). Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188, 615–621.[CrossRef]
    [Google Scholar]
  29. Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. & O'Shea, E. K. ( 2003; ). Global analysis of protein localization in budding yeast. Nature 425, 686–691.[CrossRef]
    [Google Scholar]
  30. Iglewicz, B. & Hoaglin, D. ( 1993; ). How to Detect and Handle Outliers. Mikwaukee, WI: ASQC Quality Press.
  31. Jansen, M. L. A., Diderich, J. A., Mashego, M., Hassane, A., de Winde, J. H., Daran-Lapujade, P. & Pronk, J. T. ( 2005; ). Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology 151, 1657–1669.[CrossRef]
    [Google Scholar]
  32. Jensen, L. T. & Culotta, V. C. ( 2002; ). Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron. J Mol Biol 318, 251–260.[CrossRef]
    [Google Scholar]
  33. Kal, A. J., van Zonneveld, A. J., Benes, V., van den Berg, M., Koerkamp, M. G., Albermann, K., Strack, N., Ruijter, J. M., Richter, A. & other authors ( 1999; ). Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol Biol Cell 10, 1859–1872.[CrossRef]
    [Google Scholar]
  34. Karpichev, I. V., Cornivelli, L. & Small, G. M. ( 2002; ). Multiple regulatory roles of a novel Saccharomyces cerevisiae protein, encoded by YOL002c, in lipid and phosphate metabolism. J Biol Chem 277, 19609–19617.[CrossRef]
    [Google Scholar]
  35. Kimura, T., Hosoda, Y., Sato, Y., Kitamura, Y., Ikeda, T., Horibe, T. & Kikuchi, M. ( 2005; ). Interactions among yeast protein-disulfide isomerase proteins and endoplasmic reticulum chaperone proteins influence their activities. J Biol Chem 280, 31438–31441.[CrossRef]
    [Google Scholar]
  36. Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N. & other authors ( 2006; ). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643.[CrossRef]
    [Google Scholar]
  37. Kuyper, M., Winkler, A. A., van Dijken, J. P. & Pronk, J. T. ( 2004; ). Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4, 655–664.[CrossRef]
    [Google Scholar]
  38. Lee, K. S., Patton, J. L., Fido, M., Hines, L. K., Kohlwein, S. D., Paltauf, F., Henry, S. A. & Levin, D. E. ( 1994; ). The Saccharomyces cerevisiae PLB1 gene encodes a protein required for lysophospholipase and phospholipase-B activity. J Biol Chem 269, 19725–19730.
    [Google Scholar]
  39. Lyons, T. J., Villa, N. Y., Regalla, L. M., Kupchak, B. R., Vagstad, A. & Eide, D. J. ( 2004; ). Metalloregulation of yeast membrane steroid receptor homologs. Proc Natl Acad Sci U S A 101, 5506–5511.[CrossRef]
    [Google Scholar]
  40. Magasanik, B. & Kaiser, C. A. ( 2002; ). Nitrogen regulation in Saccharomyces cerevisiae. Gene 290, 1–18.[CrossRef]
    [Google Scholar]
  41. Merkel, O., Fido, M., Mayr, J. A., Pruger, H., Raab, F., Zandonella, G., Kohlwein, S. D. & Paltauf, F. ( 1999; ). Characterization and function in vivo of two novel phospholipases B/lysophospholipases from Saccharomyces cerevisiae. J Biol Chem 274, 28121–28127.[CrossRef]
    [Google Scholar]
  42. Merkel, O., Oskolkova, O. V., Raab, F., El Toukhy, R. & Paltauf, F. ( 2005; ). Regulation of activity in vitro and in vivo of three phospholipases B from Saccharomyces cerevisiae. Biochem J 387, 489–496.[CrossRef]
    [Google Scholar]
  43. Monod, J. ( 1942; ). Recherche sur la Croissance des Cultures Bacteriennes. Paris: Hermann et Cie.
  44. Norgaard, P., Westphal, V., Tachibana, C., Alsoe, L., Holst, B. & Winther, J. R. ( 2001; ). Functional differences in yeast protein disulfide isomerases. J Cell Biol 152, 553–562.[CrossRef]
    [Google Scholar]
  45. Novick, A. & Szilard, L. ( 1950; ). Experiments with the chemostat on spontaneous mutations of bacteria. Proc Natl Acad Sci U S A 36, 708–719.[CrossRef]
    [Google Scholar]
  46. Pronk, J. T. ( 2002; ). Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68, 2095–2100.[CrossRef]
    [Google Scholar]
  47. Snoek, I. S. & Steensma, H. Y. ( 2006; ). Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6, 393–403.[CrossRef]
    [Google Scholar]
  48. Tachibana, C. & Stevens, T. H. ( 1992; ). The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Mol Cell Biol 12, 4601–4611.
    [Google Scholar]
  49. Tai, S. L., Boer, V. M., Daran-Lapujade, P., Walsh, M. C., de Winde, J. H., Daran, J. M. & Pronk, J. T. ( 2005; ). Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. J Biol Chem 280, 437–447.[CrossRef]
    [Google Scholar]
  50. Ter Linde, J. J. & Steensma, H. Y. ( 2002; ). A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae. Yeast 19, 825–840.[CrossRef]
    [Google Scholar]
  51. ter Schure, E. G., Sillje, H. H., Vermeulen, E. E., Kalhorn, J. W., Verkleij, A. J., Boonstra, J. & Verrips, C. T. ( 1998; ). Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 144, 1451–1462.[CrossRef]
    [Google Scholar]
  52. Tong, A. H., Evangelista, M., Parsons, A. B., Xu, H., Bader, G. D., Pagé, N., Robinson, M., Raghibizadeh, S., Hogue, C. W. V. & other authors ( 2001; ). Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368.[CrossRef]
    [Google Scholar]
  53. Tong, A. H., Lesage, G., Bader, G. D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G. F., Brost, R. L. & other authors ( 2004; ). Global mapping of the yeast genetic interaction network. Science 303, 808–813.[CrossRef]
    [Google Scholar]
  54. Trobner, W. & Piechocki, R. ( 1985; ). Competition between the dam mutator and the isogenic wild-type of Escherichia coli. Mutat Res 144, 145–149.[CrossRef]
    [Google Scholar]
  55. van den Berg, M. A., de Jong-Gubbels, P., Kortland, C. J., van Dijken, J. P., Pronk, J. T. & Steensma, H. Y. ( 1996; ). The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271, 28953–28959.[CrossRef]
    [Google Scholar]
  56. van Dijken, J. P., Bauer, J., Brambilla, L., Duboc, P., Francois, J. M., Gancedo, C., Giuseppin, M. L., Heijnen, J. J., Hoare, M. & other authors ( 2000; ). An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26, 706–714.[CrossRef]
    [Google Scholar]
  57. Verduyn, C., Postma, E., Scheffers, W. A. & van Dijken, J. P. ( 1990; ). Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136, 405–412.[CrossRef]
    [Google Scholar]
  58. Verduyn, C., Postma, E., Scheffers, W. A. & van Dijken, J. P. ( 1992; ). Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8, 501–517.[CrossRef]
    [Google Scholar]
  59. Visser, W., Scheffers, W. A., Batenburg-van der Vegte, W. H. & van Dijken, J. P. ( 1990; ). Oxygen requirements of yeasts. Appl Environ Microbiol 56, 3785–3792.
    [Google Scholar]
  60. Viswanathan, M., Muthukumar, G., Cong, Y. S. & Lenard, J. ( 1994; ). Seripauperins of Saccharomyces cerevisiae: a new multigene family encoding serine-poor relatives of serine-rich proteins. Gene 148, 149–153.[CrossRef]
    [Google Scholar]
  61. Wei, C. L., Kainuma, M. & Hershey, J. W. ( 1995; ). Characterization of yeast translation initiation factor 1A and cloning of its essential gene. J Biol Chem 270, 22788–22794.[CrossRef]
    [Google Scholar]
  62. Wilcox, L. J., Balderes, D. A., Wharton, B., Tinkelenberg, A. H., Rao, G. & Sturley, S. L. ( 2002; ). Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast. J Biol Chem 277, 32466–32472.[CrossRef]
    [Google Scholar]
  63. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J. D. & other authors ( 1999; ). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002873-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002873-0
Loading

Data & Media loading...

Supplements

Supplementary Table S1 [PDF file](25 KB)

PDF

Supplementary Table S2 [PDF file](18 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error