1887

Abstract

The GGDEF response regulator WspR couples the chemosensory Wsp pathway to the overproduction of acetylated cellulose and cell attachment in the SBW25 wrinkly spreader (WS) genotype. Here, it is shown that WspR is a diguanylate cyclase (DGC), and that DGC activity is elevated in the WS genotype compared to that in the ancestral smooth (SM) genotype. A structure–function analysis of 120 mutant alleles was employed to gain insight into the regulation and activity of WspR. Firstly, 44 random and defined pentapeptide insertions were produced in WspR, and the effects determined using assays based on colony morphology, attachment to surfaces and cellulose production. The effects of mutations within WspR were interpreted using a homology model, based on the crystal structure of PleD. Mutational analyses indicated that WspR activation occurs as a result of disruption of the interdomain interface, leading to the release of effector-domain repression by the N-terminal receiver domain. Quantification of attachment and cellulose production raised significant questions concerning the mechanisms of WspR function. The conserved RYGGEEF motif of WspR was also subjected to mutational analysis, and 76 single amino acid residue substitutions were tested for their effects on WspR function. The RYGGEEF motif of WspR is functionally conserved, with almost every mutation abolishing function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002824-0
2007-04-01
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/980.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002824-0&mimeType=html&fmt=ahah

References

  1. Aldridge P., Paul R., Goymer P., Rainey P., Jenal U.. 2003; Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol47:1695–1708[CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  3. Andrade M. O., Alegria M. C., Guzzo C. R., Docena C., Rosa M. C., Ramos C. H., Farah C. S.. 2006; The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri. Mol Microbiol62:537–551[CrossRef]
    [Google Scholar]
  4. Baikalov I., Schroder I., Kaczor-Grzeskowaik M., Grzeskowaik K., Gunsalus R. P., Dickerson R. E.. 1996; Structure of the Escherichia coli response regulator NarL. Biochemistry35:11053–11061[CrossRef]
    [Google Scholar]
  5. Bantinaki E., Kassen R., Knight C. G., Robinson Z., Spiers A. J., Rainey P. B.. 2007; Adaptive divergence in experimental populations of Pseudomonas fluorescens . III. Mutational origins of wrinkly spreader diversity. Genetics in press
    [Google Scholar]
  6. Bobrov A. G., Kirillina O., Perry R. D.. 2005; The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett247:123–130[CrossRef]
    [Google Scholar]
  7. Boles B. R., McCarter L. L.. 2002; Vibrio parahaemolyticus scrABC , a novel operon affecting swarming and capsular polysaccharide regulation. J Bacteriol184:5946–5954[CrossRef]
    [Google Scholar]
  8. Bomchil N., Watnick P., Kolter R.. 2003; Identification and characterization of a Vibrio cholerae gene, mbaA , involved in maintenance of biofilm architecture. J Bacteriol185:1384–1390[CrossRef]
    [Google Scholar]
  9. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  10. Buckler D. R., Zhou Y., Stock A.. 2002; Evidence of intradomain and interdomain flexibility in an OmpR/PhoB homolog from Thermotoga maritima. Structure10:153–164[CrossRef]
    [Google Scholar]
  11. Chan C., Paul R., Samoray D., Amiot N. C., Giese B., Jenal U., Schirmer T.. 2004; Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci U S A101:17084–17089[CrossRef]
    [Google Scholar]
  12. Christen M., Christen B., Folcher M., Schauerte A., Jenal U.. 2005; Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem280:30829–30837[CrossRef]
    [Google Scholar]
  13. Christen B., Christen M., Paul R., Schmid F., Folcher M., Jenoe P., Meuwly M., Jenal U.. 2006; Allosteric control of cyclic di-GMP signaling. J Biol Chem281:32015–32024[CrossRef]
    [Google Scholar]
  14. D'Argenio D. A., Miller S. I.. 2004; Cyclic di-GMP as a bacterial second messenger. Microbiology150:2497–2502[CrossRef]
    [Google Scholar]
  15. D'Argenio D. A., Calfee M. W., Rainey P. B., Pesci E. C.. 2002; Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol184:6481–6489[CrossRef]
    [Google Scholar]
  16. Djordjevic S., Goudreau P., Xu Q., Stock A., West A.. 1998; Structural basis for methylesterase CheB regulation by a phosphorylation activated domain. Proc Natl Acad Sci U S A95:1381–1386[CrossRef]
    [Google Scholar]
  17. Eldridge A. M., Kang H.-S., Johnson E., Gunsalus R., Dahlquist F. W.. 2002; Effect of phosphorylation on the interdomain interaction of the response regulator, NarL. Biochemistry41:15173–15180[CrossRef]
    [Google Scholar]
  18. Galperin M. Y.. 2005; A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol5:35[CrossRef]
    [Google Scholar]
  19. Galperin M. Y., Natale D. A., Aravind L., Koonin E. V.. 1999; A specialized version of the HD hydrolase domain implicated in signal transduction. J Mol Microbiol Biotechnol1:303–305
    [Google Scholar]
  20. Galperin M. Y., Nikolskaya A. N., Koonin E. V.. 2001; Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett203:11–21[CrossRef]
    [Google Scholar]
  21. Garcia B., Latasa C., Solano C., Garcia-del Portillo F., Gamazo C., Lasa I.. 2004; Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol54:264–277[CrossRef]
    [Google Scholar]
  22. Gjermansen M., Ragas P., Sternberg C., Molin S., Tolker-Nielsen T.. 2005; Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol7:894–906[CrossRef]
    [Google Scholar]
  23. Goymer P., Kahn S., Malone J., Gehrig S., Spiers A., Rainey P.. 2006; Adaptive divergence in experimental populations of Pseudomonas fluorescens . II. The role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype. Genetics173:515–526[CrossRef]
    [Google Scholar]
  24. Guex N., Peitsch M. C.. 1997; swiss-model and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis18:2714–2723[CrossRef]
    [Google Scholar]
  25. Hallet B., Sherratt D. J., Hayes F.. 1997; Pentapeptide scanning mutagenesis: random insertion of a variable five amino-acid cassette in a target protein. Nucleic Acids Res25:1866–1867[CrossRef]
    [Google Scholar]
  26. Hayes F., Hallet B.. 2000; Pentapeptide scanning mutagenesis: encouraging old proteins to execute new tricks. Trends Microbiol8:571–577[CrossRef]
    [Google Scholar]
  27. Hecht G. B., Newton A.. 1995; Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J Bacteriol177:6223–6229
    [Google Scholar]
  28. Heeb S., Itoh Y., Nishijyo T., Schnider U., Keel C., Wade J., Walsh U., O'Gara F., Haas D.. 2000; Small, stable shuttle vectors based on the minimal pVS1 replicon for use in Gram-negative, plant-associated bacteria. Mol Plant Microbe Interact13:232–237[CrossRef]
    [Google Scholar]
  29. Hickman J. W., Tifrea D. F., Harwood C. S.. 2005; A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A102:14422–14427[CrossRef]
    [Google Scholar]
  30. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R.. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59[CrossRef]
    [Google Scholar]
  31. Huang B., Whitchurch C. B., Mattick J. S.. 2003; FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol185:7068–7076[CrossRef]
    [Google Scholar]
  32. Jenal U.. 2004; Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria?. Curr Opin Microbiol7:185–191[CrossRef]
    [Google Scholar]
  33. Johnson M. R., Montero C. I., Conners S. B., Shockley K. R., Bridger S. L., Kelly R. M.. 2005; Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol55:664–674
    [Google Scholar]
  34. Kazmierczak B. I., Lebron M. B., Murray T. S.. 2006; Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol Microbiol60:1026–1043[CrossRef]
    [Google Scholar]
  35. King E. O., Ward M. K., Raney D. E.. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med44:301–307
    [Google Scholar]
  36. Kirillina O., Fetherston J. D., Bobrov A. G., Abney J., Perry R. D.. 2004; HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol54:75–88[CrossRef]
    [Google Scholar]
  37. Kovacikova G., Lin W., Skorupski K.. 2005; Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol Microbiol57:420–433[CrossRef]
    [Google Scholar]
  38. Kulesekara H., Lee V., Brencic A., Liberati N., Urbach J., Miyata S., Lee D. G., Neely A. N., Hyodo M.. other authors 2006; Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A103:2839–2844[CrossRef]
    [Google Scholar]
  39. Mattison K., Oropeza R., Kenney L. J.. 2002; The linker region plays an important role in the interdomain communication of the response regulator OmpR. J Biol Chem277:32714–32721[CrossRef]
    [Google Scholar]
  40. Miller J. H.. 1972; Assay of β -galactosidase. In Experiments in Molecular Genetics pp352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Muchova K., Lewis R. J., Perecko D., Brannigan J., Ladds J. C., Leech A., Wilkinson A. J., Barak I.. 2004; Dimer-induced signal propagation in Spo0A. Mol Microbiol53:829–842[CrossRef]
    [Google Scholar]
  42. Park S., Meyer M., Jones A. D., Yennawar H. P., Yennawar N. H., Nixon B. T.. 2002; Two-component signaling in the AAA + ATPase DctD: binding Mg2+ and selects between alternate dimeric states of the receiver domain. FASEB J16:1964–1966
    [Google Scholar]
  43. Paul R., Weiser S., Amiot N. C., Chan C., Schirmer T., Giese B., Jenal U.. 2004; Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev18:715–727[CrossRef]
    [Google Scholar]
  44. Pei J., Grishin N. V.. 2001; GGDEF domain is homologous to adenylyl cyclase. Proteins42:210–216[CrossRef]
    [Google Scholar]
  45. Rainey P. B., Bailey M. J.. 1996; Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Mol Microbiol3:521–533
    [Google Scholar]
  46. Rainey P. B., Travisano M.. 1998; Adaptive radiation in a heterogeneous environment. Nature394:69–72[CrossRef]
    [Google Scholar]
  47. Rashid M. H., Rajanna C., Ali A., Karaolis D. K.. 2003; Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol Lett227:113–119[CrossRef]
    [Google Scholar]
  48. Robinson V. L., Wu T., Stock A.. 2003; Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. J Bacteriol185:4186–4194[CrossRef]
    [Google Scholar]
  49. Römling U.. 2005; Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci62:1234–1246[CrossRef]
    [Google Scholar]
  50. Römling U., Gomelsky M., Galperin M. Y.. 2005; C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol57:629–639[CrossRef]
    [Google Scholar]
  51. Rost B., Yachdav G., Liu J.. 2004; The PredictProtein server. Nucleic Acids Res32:W321–W326[CrossRef]
    [Google Scholar]
  52. Ryjenkov D. A., Tarutina M., Moskvin O. V., Gomelsky M.. 2005; Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol187:1792–1798[CrossRef]
    [Google Scholar]
  53. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  54. Schmidt A. J., Ryjenkov D. A., Gomelsky M.. 2005; The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol187:4774–4781[CrossRef]
    [Google Scholar]
  55. Schwede T., Kopp J., Guex N., Peitsch M. C.. 2003; swiss-model: an automated protein homology-modeling server. Nucleic Acids Res31:3381–3385[CrossRef]
    [Google Scholar]
  56. Simm R., Morr M., Kader A., Nimtz M., Romling U.. 2004; GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol53:1123–1134[CrossRef]
    [Google Scholar]
  57. Simm R., Fetherston J. D., Kader A., Romling U., Perry R. D.. 2005; Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol187:6816–6823[CrossRef]
    [Google Scholar]
  58. Spiers A. J., Kahn S. G., Bohannon J., Travisano M., Rainey P. B.. 2002; Adaptive divergence in experimental populations of Pseudomonas fluorescens . I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics161:33–46
    [Google Scholar]
  59. Spiers A. J., Bohannon J., Gehrig S. M., Rainey P. B.. 2003; Biofilm formation at the air–liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol50:15–27[CrossRef]
    [Google Scholar]
  60. Summers D. K., Sherratt D. J.. 1988; Resolution of ColE1 dimers requires a DNA sequence implicated in the three-dimensional organization of the cer site. EMBO J7:851–858
    [Google Scholar]
  61. Ude S., Arnold D. L., Moon C. D., Timms-Wilson T., Spiers A. J.. 2006; Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol8:1997–2011[CrossRef]
    [Google Scholar]
  62. Walthers D., Tran V. K., Kenney L. J.. 2003; Interdomain linkers of homologous response regulators determine their mechanism of action. J Bacteriol185:317–324[CrossRef]
    [Google Scholar]
  63. Woodcock D. M., Crowther P. J., Doherty J., Jefferson S., DeCruz E., Noyer-Weidner M., Smith S. S., Michael M. Z., Graham M. W.. 1989; Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res17:3469–3478[CrossRef]
    [Google Scholar]
  64. Zhang G. Y., Liu Y., Ruoho A. E., Hurley J. H.. 1997; Structure of the adenylyl cyclase catalytic core. Nature386:247–253[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002824-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002824-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error