1887

Abstract

Microarray studies have examined global gene expression in over 20 species of filamentous fungi encompassing a wide variety of research areas. The majority have addressed aspects of metabolism or pathogenicity. Metabolic studies have revealed important differences in the transcriptional regulation of genes for primary metabolic pathways between filamentous fungi and yeast. Transcriptional profiles for genes involved in secondary metabolism have also been established. Genes required for the biosynthesis of both useful and detrimental secondary metabolites have been identified. Due to the economic, ecological and medical implications, it is not surprising that many studies have used microarray analysis to examine gene expression in pathogenic filamentous fungi. Genes involved in various stages of pathogenicity have been identified, including those thought to be important for adaptation to the host environment. While most of the studies have simulated pathogenic conditions , a small number have also reported fungal gene expression within their plant hosts. This review summarizes the first 50 microarray studies in filamentous fungi and highlights areas for future investigation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002592-0
2007-01-01
2019-08-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/7.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002592-0&mimeType=html&fmt=ahah

References

  1. Aign, V. & Hoheisel, J. D. ( 2003; ). Analysis of nutrient-dependent transcript variations in Neurospora crassa. Fungal Genet Biol 40, 225–233.[CrossRef]
    [Google Scholar]
  2. Allen, T. D. & Nuss, D. L. ( 2004a; ). Specific and common alterations in host gene transcript accumulation following infection of the chestnut blight fungus by mild and severe hypoviruses. J Virol 78, 4145–4155.[CrossRef]
    [Google Scholar]
  3. Allen, T. D. & Nuss, D. L. ( 2004b; ). Linkage between mitochondrial hypovirulence and viral hypovirulence in the chestnut blight fungus revealed by cDNA microarray analysis. Eukaryot Cell 3, 1227–1232.[CrossRef]
    [Google Scholar]
  4. Allen, T. D., Dawe, A. L. & Nuss, D. L. ( 2003; ). Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. Eukaryot Cell 2, 1253–1265.[CrossRef]
    [Google Scholar]
  5. Bähler, J. ( 2005; ). Cell-cycle control of gene expression in budding and fission yeast. Annu Rev Genet 39, 69–94.[CrossRef]
    [Google Scholar]
  6. Bell-Pedersen, D., Shinohara, M. L., Loros, J. J. & Dunlap, J. C. ( 1996; ). Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci U S A 93, 13096–13101.[CrossRef]
    [Google Scholar]
  7. Bok, J. W., Hoffmeister, D., Maggio-Hall, L. A., Murillo, R., Glasner, J. D. & Keller, N. P. ( 2006; ). Genomic mining for Aspergillus natural products. Chem Biol 13, 31–37.[CrossRef]
    [Google Scholar]
  8. Bonaccorsi, E. D., Ferreira, A. J. S., Chambergo, F. S., Ramos, S. P., Mantovani, M. C., Farah, J. P. S., Sorio, C. S., Gombert, A. K., Tonso, A. & El-Dorry, H. ( 2006; ). Transcriptional response of the obligatory aerobe Trichoderma reesei to hypoxia and transient anoxia: implications for energy production and survival in the absence of oxygen. Biochemistry 45, 3912–3924.[CrossRef]
    [Google Scholar]
  9. Both, M., Eckert, S. E., Csukai, M., Muller, E., Dimopoulos, G. & Spanu, P. D. ( 2005a; ). Transcript profiles of Blumeria graminis development during infection reveal a cluster of genes that are potential virulence determinants. Mol Plant Microbe Interact 18, 125–133.[CrossRef]
    [Google Scholar]
  10. Both, M., Csukai, M., Stumpf, M. P. H. & Spanu, P. D. ( 2005b; ). Gene expression profiles of Blumeria graminis indicate dynamic changes to primary metabolism during development of an obligate biotrophic pathogen. Plant Cell 17, 2107–2122.[CrossRef]
    [Google Scholar]
  11. Chambergo, F. S., Bonaccorsi, E. D., Ferreira, A. J. S., Ramos, A. S. P., Junior, J. R. F., Abrahao-Neto, J., Farah, J. P. S. & El-Dorry, H. ( 2002; ). Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem 277, 13983–13988.[CrossRef]
    [Google Scholar]
  12. Conesa, A., Jeenes, D., Archer, D. B., van den Hondel, C. A. & Punt, P. J. ( 2002; ). Calnexin overexpression increases manganese peroxidase production in Aspergillus niger. Appl Environ Microbiol 68, 846–851.[CrossRef]
    [Google Scholar]
  13. Correa, A., Lewis, A. Z., Greene, A. V., March, I. J., Gomer, R. H. & Bell-Pedersen, D. ( 2003; ). Multiple oscillators regulate circadian gene expression in Neurospora. Proc Natl Acad Sci U S A 100, 13597–13602.[CrossRef]
    [Google Scholar]
  14. Dawe, A. L., Segers, G. C., Allen, T. D., McMains, V. C. & Nuss, D. L. ( 2004; ). Microarray analysis of Cryphonectria parasitica Gα- and Gβγ-signalling pathways reveals extensive modulation by hypovirus infection. Microbiology 150, 4033–4043.[CrossRef]
    [Google Scholar]
  15. DeRisi, J. L., Iyer, V. R. & Brown, P. O. ( 1997; ). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686.[CrossRef]
    [Google Scholar]
  16. Divon, H. H., Rothan-Denoyes, B., Davydov, O., Di Pietro, A. & Fluhr, R. ( 2005; ). Nitrogen-responsive genes are differentially regulated in planta during Fusarium oxysporum f. sp. lycopersici infection. Mol Plant Pathol 6, 459–470.[CrossRef]
    [Google Scholar]
  17. Doddapaneni, H. & Yadav, J. S. ( 2005; ). Microarray-based global differential expression profiling of P450 monooxygenases and regulatory proteins for signal transduction pathways in the white rot fungus Phanerochaete chrysosporium. Mol Genet Genomics 274, 454–466.[CrossRef]
    [Google Scholar]
  18. Felitti, S., Shields, K., Ramsperger, M., Tian, P., Sawbridge, T., Webster, T., Logan, E., Erwin, T., Forster, J. & other authors ( 2006; ). Transcriptome analysis of Neotyphodium and Epichloë grass endophytes. Fungal Genet Biol 43, 465–475.[CrossRef]
    [Google Scholar]
  19. Ferreira, M. E. D., Malavazi, I., Savoldi, M., Brakhage, A. A., Goldman, M. H. S., Kim, H. S., Nierman, W. C. & Goldman, G. H. ( 2006; ). Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet 50, 32–44.[CrossRef]
    [Google Scholar]
  20. Flipphi, M., Kocialkowska, J. & Felenbok, B. ( 2002; ). Characteristics of physiological inducers of the ethanol utilization (alc) pathway in Aspergillus nidulans. Biochem J 364, 25–31.
    [Google Scholar]
  21. Flipphi, M., van de Vondervoort, P. J., Ruijter, G. J., Visser, J., Arst, H. N., Jr & Felenbok, B. ( 2003; ). Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling. J Biol Chem 278, 11849–11857.[CrossRef]
    [Google Scholar]
  22. Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., Goedegebuur, F., Houfek, T. D., England, G. J. & other authors ( 2003; ). Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278, 31988–31997.[CrossRef]
    [Google Scholar]
  23. Freimoser, F. M., Hu, G. & St Leger, R. J. ( 2005; ). Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology 151, 361–371.[CrossRef]
    [Google Scholar]
  24. Güldener, U., Seong, K. Y., Boddu, J., Cho, S., Trail, F., Xu, J., Adam, G., Mewes, H., Muehlbauer, G. J. & Kistler, H. C. ( 2006; ). Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genet Biol 43, 316–325.[CrossRef]
    [Google Scholar]
  25. Hromatka, B. S., Noble, S. M. & Johnson, A. D. ( 2005; ). Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell 16, 4814–4826.[CrossRef]
    [Google Scholar]
  26. Hwang, C. S., Flaishman, M. A. & Kolattukudy, P. E. ( 1995; ). Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides and a marked decrease in virulence by disruption of this gene. Plant Cell 7, 183–193.[CrossRef]
    [Google Scholar]
  27. Jakupović, M., Heintz, M., Reichmann, P., Mendgen, K. & Hahn, M. ( 2006; ). Microarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae. Fungal Genet Biol 43, 8–19.[CrossRef]
    [Google Scholar]
  28. Johansson, T., Le Quéré, A., Ahren, D., Söderström, B., Erlandsson, R., Lundeberg, J., Uhlén, M. & Tunlid, A. ( 2004; ). Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue. Mol Plant Microbe Interact 17, 202–215.[CrossRef]
    [Google Scholar]
  29. Kasuga, T., Townsend, J. P., Tian, C. G., Gilbert, L. B., Mannhaupt, G., Taylor, J. W. & Glass, N. L. ( 2005; ). Long-oligomer microarray profiling in Neurospora crassa reveals the transcriptional program underlying biochemical and physiological events of conidial germination. Nucleic Acids Res 33, 6469–6485.[CrossRef]
    [Google Scholar]
  30. Kim, Y. K., Wang, Y., Liu, Z. M. & Kolattukudy, P. E. ( 2002; ). Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioides conidia as a sterol glycosyl transferase, a novel fungal virulence factor. Plant J 30, 177–187.[CrossRef]
    [Google Scholar]
  31. Kwast, K. E., Lai, L. C., Menda, N., James, D. T., III, Aref, S. & Burke, P. V. ( 2002; ). Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response. J Bacteriol 184, 250–265.[CrossRef]
    [Google Scholar]
  32. Lashkari, D. A., DeRisi, J. L., McCusker, J. H., Namath, A. F., Gentile, C., Hwang, S. Y., Brown, P. O. & Davis, R. W. ( 1997; ). Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci U S A 94, 13057–13062.[CrossRef]
    [Google Scholar]
  33. Lee, S. H., Lee, S., Choi, D., Lee, Y. W. & Yun, S. H. ( 2006; ). Identification of the down-regulated genes in a mat1-2-deleted strain of Gibberella zeae, using cDNA subtraction and microarray analysis. Fungal Genet Biol 43, 295–310.[CrossRef]
    [Google Scholar]
  34. Lepak, A., Nett, J., Lincoln, L., Marchillo, K. & Andes, D. ( 2006; ). Time course of microbiologic outcome and gene expression in Candida albicans during and following in vitro and in vivo exposure to fluconazole. Antimicrob Agents Chemother 50, 1311–1319.[CrossRef]
    [Google Scholar]
  35. Le Quéré, A., Schützendübel, A., Rajashekar, B., Canbäck, B., Hedh, J., Erland, S., Johansson, T. & Tunlid, A. ( 2004; ). Divergence in gene expression related to variation in host specificity of an ectomycorrhizal fungus. Mol Ecol 13, 3809–3819.[CrossRef]
    [Google Scholar]
  36. Le Quéré, A., Wright, D. P., Söderström, B., Tunlid, A. & Johansson, T. ( 2005; ). Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. Mol Plant Microbe Interact 18, 659–673.[CrossRef]
    [Google Scholar]
  37. Le Quéré, A., Eriksen, K. A., Rajashekar, B., Schützenbübel, A., Canbäck, B., Johansson, T. & Tunlid, A. ( 2006; ). Screening for rapidly evolving genes in the ectomycorrhizal fungus Paxillus involutus using cDNA microarrays. Mol Ecol 15, 535–550.
    [Google Scholar]
  38. Lewis, Z. A., Correa, A., Schwerdtfeger, C., Link, K. L., Xie, X., Gomer, R. H., Thomas, T., Ebbole, D. J. & Bell-Pedersen, D. ( 2002; ). Overexpression of White Collar-1 (WC-1) activates circadian clock-associated genes, but is not sufficient to induce most light-regulated gene expression in Neurospora crassa. Mol Microbiol 45, 917–931.[CrossRef]
    [Google Scholar]
  39. Li, D., Bobrowicz, P., Wilkinson, H. H. & Ebbole, D. J. ( 2005; ). A mitogen-activated protein kinase pathway essential for mating and contributing to vegetative growth in Neurospora crassa. Genetics 170, 1091–1104.[CrossRef]
    [Google Scholar]
  40. MacKenzie, D. A., Guillemette, T., Al-Sheikh, H., Watson, A. J., Jeenes, D. J., Wongwathanarat, P., Dunn-Coleman, N. S., van Peij, N. & Archer, D. B. ( 2005; ). UPR-independent dithiothreitol stress-induced genes in Aspergillus niger. Mol Genet Genomics 274, 410–418.[CrossRef]
    [Google Scholar]
  41. Maeda, H., Sano, M., Maruyama, Y., Tanno, T., Akao, T., Totsuka, Y., Endo, M., Sakurada, R., Yamagata, Y. & other authors ( 2004; ). Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags. Appl Microbiol Biotechnol 65, 74–83.
    [Google Scholar]
  42. McFadden, H. G., Wilson, I. W., Chapple, R. M. & Dowd, C. ( 2006; ). Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) genes expressed during infection of cotton (Gossypium hirsutum). Mol Plant Pathol 7, 87–101.[CrossRef]
    [Google Scholar]
  43. Moralejo, F. J., Watson, A. J., Jeenes, D. J., Archer, D. B. & Martin, J. F. ( 2001; ). A defined level of protein disulfide isomerase expression is required for optimal secretion of thaumatin by Aspergillus awamori. Mol Genet Genomics 266, 246–253.[CrossRef]
    [Google Scholar]
  44. Nicolaisen, M., Justesen, A. F., Thrane, U., Skouboe, P. & Holmstrom, K. ( 2005; ). An oligonucleotide microarray for the identification and differentiation of trichothecene producing and non-producing Fusarium species occurring on cereal grain. J Microbiol Methods 62, 57–69.[CrossRef]
    [Google Scholar]
  45. Nierman, W. C., Pain, A., Anderson, M. J., Wortman, J. R., Kim, H. S., Arroyo, J., Berriman, M., Abe, K., Archer, D. B. & other authors ( 2005; ). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156.[CrossRef]
    [Google Scholar]
  46. Nowrousian, M., Duffield, G. E., Loros, J. J. & Dunlap, J. C. ( 2003; ). The frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassa. Genetics 164, 923–933.
    [Google Scholar]
  47. Nowrousian, M., Ringelberg, C., Dunlap, J. C., Loros, J. L. & Kuck, U. ( 2005; ). Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Mol Genet Genomics 273, 137–149.[CrossRef]
    [Google Scholar]
  48. O'Brian, G. R., Fakhoury, A. M. & Payne, G. A. ( 2003; ). Identification of genes differentially expressed during aflatoxin biosynthesis in Aspergillus flavus and Aspergillus parasiticus. Fungal Genet Biol 39, 118–127.[CrossRef]
    [Google Scholar]
  49. Peng, X., Karuturi, R. K., Miller, L. D., Lin, K., Jia, Y., Kondu, P., Wang, L., Wong, L., Liu, E. T. & other authors ( 2005; ). Identification of cell cycle-regulated genes in fission yeast. Mol Biol Cell 16, 1026–1042.[CrossRef]
    [Google Scholar]
  50. Pirttilä, A. M., McIntyre, L. M., Payne, G. A. & Woloshuk, C. P. ( 2004; ). Expression profile analysis of wild-type and fec1 mutant strains of Fusarium verticillioides during fumonisin biosynthesis. Fungal Genet Biol 41, 647–656.[CrossRef]
    [Google Scholar]
  51. Pöggeler, S., Nowrousian, M., Ringelberg, C., Loros, J. J., Dunlap, J. C. & Kuck, U. ( 2006; ). Microarray and real-time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus. Mol Genet Genomics 275, 492–503.[CrossRef]
    [Google Scholar]
  52. Price, M. S., Shannon, B. C. B., Sabrina, T. B., Robert, A. K. B. & Payne, G. A. ( 2005; ). Aflatoxin conducive and non-conducive growth conditions reveal new gene associations with aflatoxin production. Fungal Genet Biol 42, 506–518.[CrossRef]
    [Google Scholar]
  53. Price, M. S., Yu, J. J., Nierman, W. C., Kim, H. S., Pritchard, B., Jacobus, C. A., Bhatnagar, D., Cleveland, T. E. & Payne, G. A. ( 2006; ). The aflatoxin pathway regulator AfIR induces gene transcription inside and outside of the aflatoxin biosynthetic cluster. FEMS Microbiol Lett 255, 275–279.[CrossRef]
    [Google Scholar]
  54. Qi, W. H., Chil, K. & Trail, F. ( 2006; ). Microarray analysis of transcript accumulation during perithecium development in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Mol Genet Genomics 276, 87–100.[CrossRef]
    [Google Scholar]
  55. Ray, A., Macwana, S., Ayoubi, P., Hall, L. T., Prade, R. & Mort, A. J. ( 2004; ). Negative subtraction hybridization: an efficient method to isolate large numbers of condition-specific cDNAs. BMC Genomics 5, 22.[CrossRef]
    [Google Scholar]
  56. Sandovsky-Losica, H., Chauhan, N., Calderone, R. & Segal, E. ( 2006; ). Gene transcription studies of Candida albicans following infection of HEp2 epithelial cells. Med Mycol 44, 329–334.[CrossRef]
    [Google Scholar]
  57. Sargent, M. L., Briggs, W. R. & Woodward, D. O. ( 1966; ). Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol 41, 1343–1349.[CrossRef]
    [Google Scholar]
  58. Sims, A. H., Robson, G. D., Hoyle, D. C., Oliver, S. G., Turner, G., Prade, R. A., Russell, H. H., Dunn-Coleman, N. S. & Gent, M. E. ( 2004; ). Use of expressed sequence tag analysis and cDNA microarrays of the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 41, 199–212.[CrossRef]
    [Google Scholar]
  59. Sims, A. H., Gent, M. E., Lanthaler, K., Dunn-Coleman, N. S., Oliver, S. G. & Robson, G. D. ( 2005; ). Transcriptome analysis of recombinant protein secretion by Aspergillus nidulans and the unfolded-protein response in vivo. Appl Environ Microbiol 71, 2737–2747.[CrossRef]
    [Google Scholar]
  60. Söderström, B., Finlay, R. D. & Read, D. J. ( 1988; ). The structure and function of the vegetative mycelium of ectomycorrhizal plants. 4. Qualitative analysis of carbohydrate contents of mycelium interconnecting host plants. New Phytol 109, 163–166.[CrossRef]
    [Google Scholar]
  61. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. & Futcher, B. ( 1998; ). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273–3297.[CrossRef]
    [Google Scholar]
  62. Sun, X., Jiang, M. F., Li, X. & Zhang, Y. Z. ( 2004; ). Rapid screening of expressed genes of Trametes gallica by cDNA microarray. Prog Biochem Biophys 31, 356–360.
    [Google Scholar]
  63. Takahashi, J. S. & Zatz, M. ( 1982; ). Regulation of circadian rhythmicity. Science 217, 1104–1111.[CrossRef]
    [Google Scholar]
  64. Takano, Y., Choi, W. B., Mitchell, T. K., Okuno, T. & Dean, R. A. ( 2003; ). Large scale parallel analysis of gene expression during infection-related morphogenesis of Magnaporthe grisea. Mol Plant Pathol 4, 337–346.[CrossRef]
    [Google Scholar]
  65. Wang, C. S. & Leger, R. J. S. ( 2005; ). Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryot Cell 4, 937–947.[CrossRef]
    [Google Scholar]
  66. Wang, C. S., Hu, G. & St Leger, R. J. ( 2005a; ). Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet Biol 42, 704–718.[CrossRef]
    [Google Scholar]
  67. Wang, C. S., Butt, T. M. & St Leger, R. J. ( 2005b; ). Colony sectorization of Metarhizium anisopliae is a sign of ageing. Microbiology 151, 3223–3236.[CrossRef]
    [Google Scholar]
  68. Wright, D. P., Johansson, T., Le Quéré, A., Soderstrom, B. & Tunlid, A. ( 2005; ). Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula) seedlings in soil microcosms. New Phytol 167, 579–596.[CrossRef]
    [Google Scholar]
  69. Xie, X., Wilkinson, H. H., Correa, A., Lewis, Z. A., Bell-Pedersen, D. & Ebbole, D. J. ( 2004; ). Transcriptional response to glucose starvation and functional analysis of a glucose transporter of Neurospora crassa. Fungal Genet Biol 41, 1104–1119.[CrossRef]
    [Google Scholar]
  70. Xu, Q., Ibarra, M., Mahadeo, D., Shaw, C., Huang, E., Kuspa, A., Cotter, D. & Shaulsky, G. ( 2004; ). Transcriptional transitions during Dictyostelium spore germination. Eukaryot Cell 3, 1101–1110.[CrossRef]
    [Google Scholar]
  71. Young, M. W. & Kay, S. A. ( 2001; ). Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2, 702–715.[CrossRef]
    [Google Scholar]
  72. Yu, J. H., Butchko, R. A., Fernandes, M., Keller, N. P., Leonard, T. J. & Adams, T. H. ( 1996; ). Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Curr Genet 29, 549–555.[CrossRef]
    [Google Scholar]
  73. Zahiri, A. R., Babu, M. R. & Saville, B. J. ( 2005; ). Differential gene expression during teliospore germination in Ustilago maydis. Mol Genet Genomics 273, 394–403.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002592-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002592-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error