1887

Abstract

The gene is located at the end of a large flagellar locus in at least 10 peritrichously flagellated Gram-negative bacterial genera, but it shares no significant similarity with other genes. This study shows that is transcribed as part of an flagellar operon, under the control of the flagellar master regulator FlhDC. Deletion of the chromosomal gene did not affect swimming motility, but it abolished swarming motility across solid agar. Swarming was restored to the Δ mutant by the 130 aa putative envelope protein FlhE, but not by a truncated version lacking the N-terminal signal peptidase I recognition sequence. The Δ mutant was indistinguishable from the wild-type parent in number and distribution of flagella, secretion of flagellin subunits, and flagellar gene expression, and there were no obvious differences in cell-surface LPS and extracellular polysaccharide. The Δ mutant was able to swarm when non-ionic surfactant was included in agar medium, and it showed differences to the wild-type in binding calcofluor and Congo red dyes, and in biofilm production. The data show that the gene is part of the flagella regulon but that it has no role in flagella biogenesis. It appears, nevertheless, to act at the cell envelope to influence flagella-dependent swarming.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002576-0
2007-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/541.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002576-0&mimeType=html&fmt=ahah

References

  1. Allison C., Hughes C. 1991; Closely linked genetic loci required for swarm cell differentiation and multicellular migration by Proteus mirabilis . Mol Microbiol 5:1975–1982 [CrossRef]
    [Google Scholar]
  2. Allison C., Emody L., Coleman N., Hughes C. 1994; The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis . J Infect Dis 169:1155–1158 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Zhang J., Zhang Z., Miller W., Lipman D. J., Schäffer A. A. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Auvray F., Thomas J., Fraser G. M., Hughes C. 2001; Flagellin polymerisation control by a cytosolic export chaperone. J Mol Biol 308:221–229 [CrossRef]
    [Google Scholar]
  5. Belas R., Goldman M., Ashliman K. 1995; Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J Bacteriol 177:823–828
    [Google Scholar]
  6. Branda S. S., Vik S. Friedman L., Kolter R. 2005; Biofilms: the matrix revisited. Trends Microbiol 13:20–26 [CrossRef]
    [Google Scholar]
  7. Chadsey M. S., Karlinsey J. E., Hughes K. T. 1998; The flagellar anti-sigma factor FlgM actively dissociates Salmonella typhimurium sigma28 RNA polymerase holoenzyme. Genes Dev 12:3123–3136 [CrossRef]
    [Google Scholar]
  8. Chaudhuri R. R., Khan A. M., Pallen M. J. 2004; coliBASE: an online database for Escherichia coli, Shigella and Salmonella comparative genomics. Nucleic Acids Res 32:296–299 [CrossRef]
    [Google Scholar]
  9. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [CrossRef]
    [Google Scholar]
  10. Dufour A., Furness R. B., Hughes C. 1998; Novel genes that upregulate the Proteus mirabilis flhDC master operon controlling flagellar biogenesis and swarming. Mol Microbiol 29:741–751 [CrossRef]
    [Google Scholar]
  11. Eberl L., Soren-Molin I., Givskov M. 1999; Surface motility of Serratia liquefaciens MG1. J Bacteriol 181:1703–1712
    [Google Scholar]
  12. Fraser G. M., Hughes C. 1999; Swarming motility. Curr Opin Microbiol 2:630–635 [CrossRef]
    [Google Scholar]
  13. Givskov M., Eberl L., Christiansen G., Benedik M. J., Molin S. 1995; Induction of phospholipase and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhD . Mol Microbiol 15:445–454 [CrossRef]
    [Google Scholar]
  14. Guard-Petter J. 2001; The chicken, the egg and Salmonella enteritidis . Environ Microbiol 3:421–430 [CrossRef]
    [Google Scholar]
  15. Guard-Petter J., Lakshmi B., Carlson R., Ingram K. 1995; Characterization of lipopolysaccharide heterogeneity in Salmonella enteritidis by an improved gel electrophoresis method. Appl Environ Microbiol 61:2845–2851
    [Google Scholar]
  16. Gygi D., Rahman M. M., Lai H. C., Carlson R., Guard-Petter J., Hughes C. 1995; A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis . Mol Microbiol 17:1167–1175 [CrossRef]
    [Google Scholar]
  17. Hay N. A., Tipper D. J., Gygi D., Hughes C. 1997; A nonswarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator. J Bacteriol 179:4741–4746
    [Google Scholar]
  18. Hay N. A., Tipper D. J., Gygi D., Hughes C. 1999; A novel membrane protein influencing cell shape and multicellular swarming of Proteus mirabilis . J Bacteriol 181:2008–2016
    [Google Scholar]
  19. Hitchcock P. J., Brown T. M. 1983; Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154:269–277
    [Google Scholar]
  20. Karlinsey J. E., Tanaka S., Bettenworth V., Yamaguchi S., Boos W., Aizawa S. I., Hughes K. T. 2000; Completion of the hook–basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microbiol 37:1220–1231 [CrossRef]
    [Google Scholar]
  21. Kutsukake K., Ohya Y., Iino T. 1990; Transcriptional analysis of the flagellar regulon of Salmonella typhimurium . J Bacteriol 172:741–747
    [Google Scholar]
  22. Lai H. C., Soo P. C., Wei J. R., Yi W. C., Liaw S. J., Horng Y. T., Lin S. M., Ho S. W., Swift S., Williams P. 2005; The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. J Bacteriol 187:3407–3414 [CrossRef]
    [Google Scholar]
  23. Larsen R. A., Wood G. E., Postle K. 1993; The conserved proline-rich motif is not essential for energy transduction by Escherichia coli TonB protein. Mol Microbiol 10:943–953 [CrossRef]
    [Google Scholar]
  24. Macnab R. M. others 1996 Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 123–145 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Matsuyama T., Kaneda K., Nakagawa Y., Isa K., Hara-Hotta H., Yano I. 1992; A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens . J Bacteriol 174:1769–1776
    [Google Scholar]
  26. McCarter L. L. 2001; Polar flagellar motility of the Vibrionaceae . Microbiol Mol Biol Rev 65:445–462 [CrossRef]
    [Google Scholar]
  27. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbour, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Minamino T., Iino T., Kutuskake K. 1994; Molecular characterization of the Salmonella typhimurium flhB operon and its protein products. J Bacteriol 176:7630–7637
    [Google Scholar]
  29. Mireles J. R. II, Toguchi A., Harshey R. M. 2001; Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854 [CrossRef]
    [Google Scholar]
  30. Nakano M. M., Corbell N., Besson J., Zuber P. 1992; Isolation and characterization of sfp : a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis . Mol Gen Genet 232:313–321
    [Google Scholar]
  31. Niu C., Graves J. D., Mokuolu F. O., Gilbert S. E., Gilbert E. S. 2005; Enhanced swarming of bacteria on agar plates containing the surfactant Tween 80. J Microbiol Methods 62:129–132 [CrossRef]
    [Google Scholar]
  32. Ohnishi K., Ohto Y., Aizawa S., Macnab R. M., Iino T. 1994; FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium . J Bacteriol 176:2272–2281
    [Google Scholar]
  33. Römling U., Bian Z., Hammar M., Sierralta W. D., Normark S. 1998; Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731
    [Google Scholar]
  34. Seifert T. B., Bleiweis A. S., Brady L. J. 2004; Contribution of the alanine-rich region of Streptococcus mutans P1 to antigenicity, surface expression, and interaction with the proline-rich repeat domain. Infect Immun 72:4699–4706 [CrossRef]
    [Google Scholar]
  35. Simons R. W., Houman F., Kleckner N. 1987; Improved single and multicopy lac -based cloning vectors for protein and operon fusions. Gene 53:85–96 [CrossRef]
    [Google Scholar]
  36. Solano C., Sesma B., Alvarez M., Humphrey T. J., Thorns C. J., Gamazo C. 1998; Discrimination of strains of Salmonella enteritidis with differing levels of virulence by an in vitro glass adherence test. J Clin Microbiol 36:674–678
    [Google Scholar]
  37. Solano C., Garcia B., Valle J., Berasain C., Ghigo J. M., Gamazo C., Lasa I. 2002; Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793–808 [CrossRef]
    [Google Scholar]
  38. Soutourina O. A., Bertin P. N. 2003; Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27:505–523 [CrossRef]
    [Google Scholar]
  39. Stafford G. P., Ogi T., Hughes C. 2005; Binding and transcriptional activation of non-flagellar genes by the Escherichia coli flagellar master regulator FlhD2C2. Microbiology 151:1779–1788 [CrossRef]
    [Google Scholar]
  40. Toguchi A., Siano M., Burkart M., Harshey R. M. 2000; Genetics of swarming motility in Salmonella enterica serovar typhimurium, critical role for lipopolysaccharide. J Bacteriol 182:6308–6321 [CrossRef]
    [Google Scholar]
  41. Wang Q., Frye J. G., McClelland M., Harshey R. M. 2004; Gene expression patterns during swarming in Salmonella typhimurium , genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol 52:169–187 [CrossRef]
    [Google Scholar]
  42. Wang X., Romeo T., Preston J. F. III 2004; The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2724–2734 [CrossRef]
    [Google Scholar]
  43. Yamaguchi S., Fujita H., Taira T., Kutsukake K., Homma M., Iino T. 1984; Genetic analysis of three additional fla genes in Salmonella typhimurium . J Gen Microbiol 130:3339–3342
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002576-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002576-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error