1887

Abstract

It has been previously reported that resting-cells, non-proliferating cells, of RIPI90A can convert dibenzothiophene (DBT) to 2-hydroxybiphenyl (2-HBP) via the 4S pathway in a biphasic system. The main goal of the current work was to study the behaviour of resting-cells of this strain in biphasic organic media. Resting-cells showed strong affinity for sulfurous organic substrates and were able to stabilize water/gas oil emulsions by attaching to the interface without decreasing the surface tension of their environment. This was consistent with the behaviour of the whole cells but not the surfactants, suggesting that microbial cell-mediated emulsification occurs. It was found that the emulsion-stabilizing activity of the resting-cells was influenced by the growth stage, but was not directly influenced by the metabolic activity of the resting-cells. This activity may be related to cell-surface hydrophobicity, which results from the unique chemical structure of the cell surface. In some biphasic biodesulfurization (BDS) bioreactors, emulsions are created without addition of any surfactant. Cell surface-mediated stabilization helps prolong the emulsions and therefore overcomes mass-transfer limitations in bioreactors. The simultaneous occurrence of emulsion-stabilizing and desulfurization activities of resting-cells was observed for what is believed to be the first time. The results suggest that this strain may have potential for the BDS of diesel oils.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002543-0
2007-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1573.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002543-0&mimeType=html&fmt=ahah

References

  1. Alaya, M. & Vazquez-Duhalt, R. ( 2004; ). Enzymatic catalysis on petroleum products. In Petroleum Biotechnology, Developments and Perspectives. Edited by R. Vazquez-Duhalt & R. Quintero-Ramirez. Amsterdam: Elsevier.
  2. Arenskotter, M., Broker, D. & Steinbuchel, A. ( 2004; ). Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70, 3195–3204.[CrossRef]
    [Google Scholar]
  3. Bendinger, B., Rijnaarts, H. H. M., Altendorf, K. & Zehnder, A. J. B. ( 1993; ). Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol 59, 3973–3977.
    [Google Scholar]
  4. Bodour, A. A., Guerrero-Barajas, C., Jiorle, B. V., Malcomson, M. E., Paull, A. K., Somogyi, A., Trinh, L. N., Bates, R. B., Maier, R. M. & other authors ( 2004; ). Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp. strain MTN11. Appl Environ Microbiol 70, 114–120.[CrossRef]
    [Google Scholar]
  5. Borgne, S. L. & Quintro, R. ( 2003; ). Biotechnological processes for the refining of petroleum. Fuel Processing Technology 81, 155–169.[CrossRef]
    [Google Scholar]
  6. Botsford, J. L., Hillaker, T., Robertson, B., Gonzales, M., Benavidez, M., Jones, B., Baker, R., Steen, W., Pacheco, F. & other authors ( 1996; ). A simple, rapid, inexpensive assay for toxic chemicals using a bacterial indicator. Proceedings of the HSRC/WERC Joint Conference on the Environment, May 1996, New Mexico USA.
  7. Bredholt, H., Josefsen, K., Vatland, A., Bruheim, P. & Eimhjellen, K. ( 1998; ). Emulsification of crude oil by an alkane-oxidizing Rhodococcus species isolated from seawater. Can J Microbiol 44, 330–340.[CrossRef]
    [Google Scholar]
  8. Cassidy, D. P. & Hudak, A. J. ( 2001; ). Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. J Hazard Mater B84, 253–264.
    [Google Scholar]
  9. Chiang, S. ( 2004; ). Strain improvement for fermentation and biocatalysis processes by genetic engineering technology. J Ind Microbiol Biotechnol 31, 99–108.[CrossRef]
    [Google Scholar]
  10. Cooper, D. G. & Goldenberg, B. G. ( 1987; ). Surface-active agents from two Bacillus species. Appl Environ Microbiol 53, 224–229.
    [Google Scholar]
  11. Dahlback, B., Hermansson, M., Kjelleberg, S. & Norkrans, B. ( 1981; ). The hydrophobicity of bacteria – an important factor in their initial adhesion at the air–water interface. Arch Microbiol 128, 267–270.[CrossRef]
    [Google Scholar]
  12. Dorobantu, L. S., Yeung, A. K. C., Foght, J. M. & Gray, M. R. ( 2004; ). Stabilization of oil–water emulsion by hydrophobic bacteria. Appl Environ Microbiol 70, 6333–6336.[CrossRef]
    [Google Scholar]
  13. Foght, J. M. ( 2004; ). Whole-cell bio-processing of aromatic compounds in crude oil and fuels. In Petroleum Biotechnology, Developments and Perspectives. Edited by R. Vazquez-Duhalt & R. Quinterao-Ramirez. Amsterdam: Elsevier.
  14. Freimoser, F. M., Jakob, C. A., Aebi, M. & Tuor, U. ( 1999; ). The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay is a fast and reliable method for colorimetric determination of fungal cell densities. Appl Environ Microbiol 65, 3727–3729.
    [Google Scholar]
  15. Johnson, A. R. J., Bendixen, K. & Karlson, U. ( 2002; ). Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1. Appl Environ Microbiol 68, 2683–2689.[CrossRef]
    [Google Scholar]
  16. Kayser, K. J., Bielaga-Jones, B. A., Jackowski, K., Odusan, O. & Kilbane, J. J. ( 1993; ). Utilization of organosulfur compounds by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8. J Gen Microbiol 139, 3123–3129.[CrossRef]
    [Google Scholar]
  17. Kilbane, J. J., II & Le Borgne, S. ( 2004; ). Petroleum biorefining: the selective removal of sulfur, nitrogen, and metals. In Petroleum Biotechnology, Developments and Perspectives. Edited by R. Vazquez-Duhalt & R. Quinterao-Ramirez. Amsterdam: Elsevier.
  18. Lee, I. S., Bae, H., Ryu, H. W., Cho, K. & Chang, Y. K. ( 2005; ). Biocatalytic desulfurization of diesel oil in an air-lift reactor with immobilized Gordonia nitida CYKS1 cells. Biotechnol Prog 21, 781–785.
    [Google Scholar]
  19. Linos, A., Berekaa, M. M., Reichelt, R., Keller, U., Schmitt, J., Flemming, H., Kroppenstedt, R. M. & Steinbuchel, A. ( 2000; ). Biodegradation of cis-1,4-polyisoprene rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis. Appl Environ Microbiol 66, 1639–1645.[CrossRef]
    [Google Scholar]
  20. McFarland, B. L. ( 1999; ). Biodesulfurization. Curr Opin Microbiol 2, 257–264.[CrossRef]
    [Google Scholar]
  21. Mohebali, G., Ball, A. S., Rasekh, B. & Kaytash, A. ( 2007; ). Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A. Enzyme Microb Technol 40, 578–584.[CrossRef]
    [Google Scholar]
  22. Naito, M., Kawamoto, T., Fujino, K., Kobayashi, M., Maruhashi, K. & Tanaka, A. ( 2001; ). Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells. Appl Microbiol Biotechnol 55, 374–378.[CrossRef]
    [Google Scholar]
  23. Oldfield, C., Pogrebinsky, O., Simmonds, J., Olson, E. & Kupla, C. F. ( 1997; ). Elucidation of the metabolic pathway for dibenzothiophene desulfurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology 143, 2961–2973.[CrossRef]
    [Google Scholar]
  24. Pacheco, M. A. ( 1999; ). Recent advances in biodesulfurization (BDS) of diesel fuel. Paper presented at the NPRA Annual Meeting, San Antonio, TX, 21–23 March 1999.
  25. Patel, S. B., Kilbane, J. J., II & Webster, D. A. ( 1997; ). Biodesulfurization of dibenzothiophene in hydrophobic media by Rhodococcus sp. strain IGTS8. J Chem Tech Biotechnol 69, 100–106.[CrossRef]
    [Google Scholar]
  26. Pembrey, R. S., Marshall, K. C. & Schneider, R. P. ( 1999; ). Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties? Appl Environ Microbiol 65, 2877–2894.
    [Google Scholar]
  27. Purdy, R. F., Lepo, J. E. & Ward, B. ( 1993; ). Biodesulfurization of organic-sulfur compounds. Curr Microbiol 27, 219–222.[CrossRef]
    [Google Scholar]
  28. Rosenberg, M., Gutnick, D. & Rosenberg, E. ( 1980; ). Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9, 29–33.[CrossRef]
    [Google Scholar]
  29. Shennan, J. L. ( 1996; ). Microbial attack on sulfur-containing hydrocarbons: implications for the biodesulfurization of oils and coals. J Chem Tech Biotechnol 67, 109–123.[CrossRef]
    [Google Scholar]
  30. Sokolovská, I., Rozenberg, R., Riez, C., Rouxhet, P. G., Agathos, S. N. & Wattiau, P. ( 2003; ). Carbon-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69, 7019–7027.[CrossRef]
    [Google Scholar]
  31. Stratton, H. M., Brooks, P. R., Carr, E. L. & Seviour, R. J. ( 2003; ). Effect of culture conditions on the mycolic acid composition of isolates of Rhodococcus spp. from activated sludge foams. Syst Appl Microbiol 26, 165–171.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002543-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002543-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error