1887

Abstract

Phenylacetic acid (PA) degradation in bacteria involves an aerobic hybrid pathway encoded by the gene cluster. It is shown here that succinyl-CoA is one of the final products of this pathway in and . Moreover, and studies revealed that the gene encodes the -ketoadipyl-CoA thiolase that catalyses the last step of the PA catabolic pathway, i.e. the thiolytic cleavage of -ketoadipyl-CoA to succinyl-CoA and acetyl-CoA. Succinyl-CoA is suggested as a common final product of aerobic hybrid pathways devoted to the catabolism of aromatic compounds.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002444-0
2007-02-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/357.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002444-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Bachmann, B. J. ( 1987; ). Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1190–1219. Edited by F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter & H. E. Umbarger. Washington, DC: American Society for Microbiology.
  3. Bartolomé-Martín, D., Martínez-García, E., Mascaraque, V., Rubio, J., Perera, J. & Alonso, S. ( 2004; ). Characterization of a second functional gene cluster for the catabolism of phenylacetic acid in Pseudomonas sp. strain Y2. Gene 341, 167–179.[CrossRef]
    [Google Scholar]
  4. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantification of microgram protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  5. Buck, D., Spencer, M. E. & Guest, J. R. ( 1986; ). Cloning and expression of the succinyl-CoA synthetase genes of Escherichia coli K12. J Gen Microbiol 132, 1753–1762.
    [Google Scholar]
  6. Davis, B. D. & Mingioli, E. S. ( 1950; ). Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol 60, 17–28.
    [Google Scholar]
  7. de Lorenzo, V. & Timmis, K. N. ( 1994; ). Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5 and Tn10-derived mini-transposons. Methods Enzymol 235, 386–405.
    [Google Scholar]
  8. de Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. ( 1990; ). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172, 6568–6572.
    [Google Scholar]
  9. de Lorenzo, V., Eltis, L., Kessler, B. & Timmis, K. N. ( 1993; ). Analysis of Pseudomonas gene products using lacI q/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123, 17–24.[CrossRef]
    [Google Scholar]
  10. Denef, V. J., Park, J., Tsoi, T. V., Rouillard, J. M., Zhang, H., Wibbenmeyer, J. A., Verstraete, W., Gulari, E., Hashsham, S. A. & Tiedje, J. M. ( 2004; ). Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 70, 4961–4970.[CrossRef]
    [Google Scholar]
  11. Díaz, E. ( 2004; ). Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7, 173–180.
    [Google Scholar]
  12. Díaz, E., Ferrández, A., Prieto, M. A. & García, J. L. ( 2001; ). Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev 65, 523–569.[CrossRef]
    [Google Scholar]
  13. Ferrández, A., Miñambres, B., García, B., Olivera, E. R., Luengo, J. M., García, J. L. & Díaz, E. ( 1998; ). Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J Biol Chem 273, 25974–25986.[CrossRef]
    [Google Scholar]
  14. Franklin, F. C., Bagdasarian, M., Bagdasarian, M. M. & Timmis, K. N. ( 1981; ). Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Proc Natl Acad Sci U S A 78, 7458–7462.[CrossRef]
    [Google Scholar]
  15. García, B., Olivera, E. R., Miñambres, B., Carnicero, D., Muñiz, C., Naharro, G. & Luengo, J. M. ( 2000; ). Phenylacetyl-coenzyme A is the true inducer of the phenylacetic acid catabolism pathway in Pseudomonas putida U. Appl Environ Microbiol 66, 4575–4578.[CrossRef]
    [Google Scholar]
  16. Gescher, J., Zaar, A., Mohamed, M., Schägger, H. & Fuchs, G. ( 2002; ). Genes coding for a new pathway of aerobic benzoate metabolism in Azoarcus evansii. J Bacteriol 184, 6301–6315.[CrossRef]
    [Google Scholar]
  17. Gescher, J., Ismail, W., Ölgeschläger, E., Eisenreich, W., Wörth, J. & Fuchs, G. ( 2006; ). Aerobic benzoyl-CoA (CoA) catabolic pathway in Azoarcus evansii: conversion of ring cleavage product by 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase. J Bacteriol 188, 2919–2927.[CrossRef]
    [Google Scholar]
  18. Harwood, C. S. & Parales, R. E. ( 1996; ). The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50, 553–590.[CrossRef]
    [Google Scholar]
  19. Harwood, C. S., Nichols, N. N., Kim, M.-K., Ditty, J. L. & Parales, R. E. ( 1994; ). Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol 176, 6479–6488.
    [Google Scholar]
  20. Herbert, A. A. & Guest, J. R. ( 1969; ). Studies with alpha-ketoglutarate dehydrogenase mutants of Escherichia coli. Mol Gen Genet 105, 182–190.[CrossRef]
    [Google Scholar]
  21. Ismail, W., Mohamed, M. E., Wanner, B. L., Datsenko, K. A., Eisenreich, W., Rohdich, F., Bacher, A. & Fuchs, G. ( 2003; ). Functional genomics by NMR spectroscopy. Phenylacetate catabolism in Escherichia coli. Eur J Biochem 270, 3047–3054.[CrossRef]
    [Google Scholar]
  22. Jiménez, J. I., Miñambres, B., García, J. L. & Díaz, E. ( 2002; ). Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4, 824–841.[CrossRef]
    [Google Scholar]
  23. Jiménez, J. I., Miñambres, B., García, J. L. & Díaz, E. ( 2004; ). Genomic insights in the metabolism of aromatic compounds in Pseudomonas. In Pseudomonas, vol. 3, pp. 425–462. Edited by J. L. Ramos. New York: Kluwer Academic Plenum Publishers.
  24. Kang, Y., Durfee, T., Glasner, J. D., Qiu, Y., Frisch, D., Winterberg, K. M. & Blattner, F. R. ( 2004; ). Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186, 4921–4930.[CrossRef]
    [Google Scholar]
  25. Kapatral, V., Bina, X. & Chakrabarty, A. M. ( 2000; ). Succinyl coenzyme A synthetase of Pseudomonas aeruginosa with a broad specificity for nucleoside triphosphate (NTP) synthesis modulates specificity for NTP synthesis by the 12-kilodalton form of nucleoside diphosphate kinase. J Bacteriol 182, 1333–1339.[CrossRef]
    [Google Scholar]
  26. Kaschabek, S. R., Kuhn, B., Müller, D., Schmidt, E. & Reineke, W. ( 2002; ). Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification and characterization of 3-oxoadipate : succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase. J Bacteriol 184, 207–215.[CrossRef]
    [Google Scholar]
  27. Katagiri, M. & Hayaishi, O. ( 1957; ). Enzymatic degradation of β-ketoadipic acid. J Biol Chem 226, 439–448.
    [Google Scholar]
  28. Kowalchuk, G. A., Hartnett, G. B., Benson, A., Houghton, J. E., Ngai, K.-L. & Ornston, L. N. ( 1994; ). Contrasting patterns of evolutionary divergence within the Acinetobacter calcoaceticus pca operon. Gene 146, 23–30.[CrossRef]
    [Google Scholar]
  29. Kunishima, N., Asada, Y., Sugahara, M., Ishijima, J., Nodake, Y., Sugahara, M., Miyano, M., Kuramitsu, S., Yokoyama, S. & Sugahara, M. ( 2005; ). A novel induced-fit reaction mechanism of asymmetric hot dog thioesterase PaaI. J Mol Biol 352, 212–228.[CrossRef]
    [Google Scholar]
  30. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  31. Luengo, J. M., García, J. L. & Olivera, E. R. ( 2001; ). The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Mol Microbiol 39, 1434–1442.[CrossRef]
    [Google Scholar]
  32. Martínez-Blanco, H., Reglero, A., Rodríguez-Aparicio, L. B. & Luengo, J. M. ( 1990; ). Purification and biochemical characterization of the phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem 265, 7084–7090.
    [Google Scholar]
  33. Massey, L. K., Sokatch, J. R. & Conrad, R. S. ( 1976; ). Branched-chain amino acid catabolism in bacteria. Bacteriol Rev 40, 42–54.
    [Google Scholar]
  34. Mat-Jan, F., Williams, C. R. & Clark, D. P. ( 1989; ). Anaerobic growth defects resulting from gene fusions affecting succinyl-CoA synthetase in Escherichia coli K12. Mol Gen Genet 215, 276–280.[CrossRef]
    [Google Scholar]
  35. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Mohamed, M. E., Ismail, W., Heider, J. & Fuchs, G. ( 2002; ). Aerobic metabolism of phenylacetic acids in Azoarcus evansii. Arch Microbiol 178, 180–192.[CrossRef]
    [Google Scholar]
  37. Moreno-Ruiz, E., Hernáez, M. J., Martínez-Pérez, O. & Santero, E. ( 2003; ). Identification and functional characterization of Sphingomonas macrogolitabida strain TFA genes involved in the first two steps of the tetralin catabolic pathway. J Bacteriol 185, 2026–2030.[CrossRef]
    [Google Scholar]
  38. Navarro-Llorens, J. M., Patrauchan, M. A., Stewart, G. R., Davies, J. E., Eltis, L. D. & Mohn, W. W. ( 2005; ). Phenylacetate catabolism in Rhodococcus sp. strain RHA1: a central pathway for degradation of aromatic compounds. J Bacteriol 187, 4497–4504.[CrossRef]
    [Google Scholar]
  39. Nelson, K. E., Weinel, C., Paulsen, I. T., Dodson, R. J., Hilbert, H., Martins dos Santos, V. A., Fouts, D. E., Gill, S. R., Pop, M. & other authors ( 2002; ). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4, 799–808.[CrossRef]
    [Google Scholar]
  40. O'Leary, N. D., O'Connor, K. E., Ward, P., Goff, M. & Dobson, A. D. W. ( 2005; ). Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. Appl Environ Microbiol 71, 4380–4387.[CrossRef]
    [Google Scholar]
  41. Olivera, E. R., Miñambres, B., García, B., Muñiz, C., Moreno, M. A., Ferrández, A., Díaz, E., García, J. L. & Luengo, J. M. ( 1998; ). Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci U S A 95, 6419–6424.[CrossRef]
    [Google Scholar]
  42. Rost, R., Hass, S., Hammer, E., Herrmann, H. & Burchhardt, G. ( 2002; ). Molecular analysis of aerobic phenylacetate degradation in Azoarcus evansii. Mol Genet Genomics 267, 656–663.[CrossRef]
    [Google Scholar]
  43. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  44. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  45. Serina, S., Nozza, F., Nicastro, G., Faggioni, F., Mottl, H., Deho, G. & Polissi, A. ( 2004; ). Scanning the Escherichia coli chromosome by random transposon mutagenesis and multiple phenotypic screening. Res Microbiol 155, 692–701.[CrossRef]
    [Google Scholar]
  46. Song, F., Zhuang, Z., Finci, L., Dunaway-Mariano, D., Kniewel, R., Buglino, J. A., Solorzano, V., Wu, J. & Lima, C. D. ( 2006; ). Structure, function, and mechanism of the phenylacetate pathway hot dog-fold thioesterase PaaI. J Biol Chem 281, 11028–11038.[CrossRef]
    [Google Scholar]
  47. Ward, P. G. & O'Connor, K. E. ( 2005; ). Induction and quantification of the phenylacyl-CoA ligase enzyme activities in Pseudomonas putida CA-3 grown on aromatic carboxylic acids. FEMS Microbiol Lett 251, 227–232.[CrossRef]
    [Google Scholar]
  48. Zaar, A., Gescher, J., Eisenreich, W., Bächer, A. & Fuchs, G. ( 2004; ). New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii. Mol Microbiol 54, 223–238.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002444-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002444-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error