1887

Abstract

Phenylacetic acid (PA) degradation in bacteria involves an aerobic hybrid pathway encoded by the gene cluster. It is shown here that succinyl-CoA is one of the final products of this pathway in and . Moreover, and studies revealed that the gene encodes the -ketoadipyl-CoA thiolase that catalyses the last step of the PA catabolic pathway, i.e. the thiolytic cleavage of -ketoadipyl-CoA to succinyl-CoA and acetyl-CoA. Succinyl-CoA is suggested as a common final product of aerobic hybrid pathways devoted to the catabolism of aromatic compounds.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002444-0
2007-02-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/357.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002444-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  2. Bachmann B. J.. 1987; Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp1190–1219 Edited by Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Bartolomé-Martín D., Martínez-García E., Mascaraque V., Rubio J., Perera J., Alonso S.. 2004; Characterization of a second functional gene cluster for the catabolism of phenylacetic acid in Pseudomonas sp. strain Y2. Gene341:167–179[CrossRef]
    [Google Scholar]
  4. Bradford M. M.. 1976; A rapid and sensitive method for the quantification of microgram protein utilizing the principle of protein–dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  5. Buck D., Spencer M. E., Guest J. R.. 1986; Cloning and expression of the succinyl-CoA synthetase genes of Escherichia coli K12. J Gen Microbiol132:1753–1762
    [Google Scholar]
  6. Davis B. D., Mingioli E. S.. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol60:17–28
    [Google Scholar]
  7. de Lorenzo V., Timmis K. N.. 1994; Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn 5 and Tn 10 -derived mini-transposons. Methods Enzymol235:386–405
    [Google Scholar]
  8. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N.. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol172:6568–6572
    [Google Scholar]
  9. de Lorenzo V., Eltis L., Kessler B., Timmis K. N.. 1993; Analysis of Pseudomonas gene products using lacI q/ Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene123:17–24[CrossRef]
    [Google Scholar]
  10. Denef V. J., Park J., Tsoi T. V., Rouillard J. M., Zhang H., Wibbenmeyer J. A., Verstraete W., Gulari E., Hashsham S. A., Tiedje J. M.. 2004; Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol70:4961–4970[CrossRef]
    [Google Scholar]
  11. Díaz E.. 2004; Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol7:173–180
    [Google Scholar]
  12. Díaz E., Ferrández A., Prieto M. A., García J. L.. 2001; Biodegradation of aromatic compounds by Escherichia coli . Microbiol Mol Biol Rev65:523–569[CrossRef]
    [Google Scholar]
  13. Ferrández A., Miñambres B., García B., Olivera E. R., Luengo J. M., García J. L., Díaz E.. 1998; Catabolism of phenylacetic acid in Escherichia coli . Characterization of a new aerobic hybrid pathway. J Biol Chem273:25974–25986[CrossRef]
    [Google Scholar]
  14. Franklin F. C., Bagdasarian M., Bagdasarian M. M., Timmis K. N.. 1981; Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Proc Natl Acad Sci U S A78:7458–7462[CrossRef]
    [Google Scholar]
  15. García B., Olivera E. R., Carnicero D., Naharro G., Luengo J. M., Miñambres B., Muñiz C.. 2000; Phenylacetyl-coenzyme A is the true inducer of the phenylacetic acid catabolism pathway in Pseudomonas putida U. Appl Environ Microbiol66:4575–4578[CrossRef]
    [Google Scholar]
  16. Gescher J., Zaar A., Mohamed M., Fuchs G., Schägger H.. 2002; Genes coding for a new pathway of aerobic benzoate metabolism in Azoarcus evansii . J Bacteriol184:6301–6315[CrossRef]
    [Google Scholar]
  17. Gescher J., Ismail W., Eisenreich W., Fuchs G., Ölgeschläger E., Wörth J.. 2006; Aerobic benzoyl-CoA (CoA) catabolic pathway in Azoarcus evansii : conversion of ring cleavage product by 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase. J Bacteriol188:2919–2927[CrossRef]
    [Google Scholar]
  18. Harwood C. S., Parales R. E.. 1996; The β -ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol50:553–590[CrossRef]
    [Google Scholar]
  19. Harwood C. S., Nichols N. N., Kim M.-K., Ditty J. L., Parales R. E.. 1994; Identification of the pcaRKF gene cluster from Pseudomonas putida : involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol176:6479–6488
    [Google Scholar]
  20. Herbert A. A., Guest J. R.. 1969; Studies with alpha-ketoglutarate dehydrogenase mutants of Escherichia coli . Mol Gen Genet105:182–190[CrossRef]
    [Google Scholar]
  21. Ismail W., Mohamed M. E., Wanner B. L., Datsenko K. A., Eisenreich W., Rohdich F., Bacher A., Fuchs G.. 2003; Functional genomics by NMR spectroscopy. Phenylacetate catabolism in Escherichia coli . Eur J Biochem270:3047–3054[CrossRef]
    [Google Scholar]
  22. Jiménez J. I., Miñambres B., García J. L., Díaz E.. 2002; Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol4:824–841[CrossRef]
    [Google Scholar]
  23. Jiménez J. I., Miñambres B., García J. L., Díaz E.. 2004; Genomic insights in the metabolism of aromatic compounds in Pseudomonas . In Pseudomonas vol. 3 pp425–462 Edited by Ramos J. L.. New York: Kluwer Academic Plenum Publishers;
    [Google Scholar]
  24. Kang Y., Durfee T., Glasner J. D., Qiu Y., Frisch D., Winterberg K. M., Blattner F. R.. 2004; Systematic mutagenesis of the Escherichia coli genome. J Bacteriol186:4921–4930[CrossRef]
    [Google Scholar]
  25. Kapatral V., Bina X., Chakrabarty A. M.. 2000; Succinyl coenzyme A synthetase of Pseudomonas aeruginosa with a broad specificity for nucleoside triphosphate (NTP) synthesis modulates specificity for NTP synthesis by the 12-kilodalton form of nucleoside diphosphate kinase. J Bacteriol182:1333–1339[CrossRef]
    [Google Scholar]
  26. Kaschabek S. R., Kuhn B., Schmidt E., Reineke W., Müller D.. 2002; Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification and characterization of 3-oxoadipate : succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase. J Bacteriol184:207–215[CrossRef]
    [Google Scholar]
  27. Katagiri M., Hayaishi O.. 1957; Enzymatic degradation of β -ketoadipic acid. J Biol Chem226:439–448
    [Google Scholar]
  28. Kowalchuk G. A., Hartnett G. B., Benson A., Houghton J. E., Ngai K.-L., Ornston L. N.. 1994; Contrasting patterns of evolutionary divergence within the Acinetobacter calcoaceticus pca operon. Gene146:23–30[CrossRef]
    [Google Scholar]
  29. Kunishima N., Asada Y., Sugahara M., Ishijima J., Nodake Y., Sugahara M., Miyano M., Kuramitsu S., Yokoyama S., Sugahara M.. 2005; A novel induced-fit reaction mechanism of asymmetric hot dog thioesterase PaaI. J Mol Biol352:212–228[CrossRef]
    [Google Scholar]
  30. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  31. Luengo J. M., Olivera E. R., García J. L.. 2001; The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Mol Microbiol39:1434–1442[CrossRef]
    [Google Scholar]
  32. Martínez-Blanco H., Reglero A., Luengo J. M., Rodríguez-Aparicio L. B.. 1990; Purification and biochemical characterization of the phenylacetyl-CoA ligase from Pseudomonas putida . A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem265:7084–7090
    [Google Scholar]
  33. Massey L. K., Sokatch J. R., Conrad R. S.. 1976; Branched-chain amino acid catabolism in bacteria. Bacteriol Rev40:42–54
    [Google Scholar]
  34. Mat-Jan F., Williams C. R., Clark D. P.. 1989; Anaerobic growth defects resulting from gene fusions affecting succinyl-CoA synthetase in Escherichia coli K12. Mol Gen Genet215:276–280[CrossRef]
    [Google Scholar]
  35. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Mohamed M. E., Ismail W., Heider J., Fuchs G.. 2002; Aerobic metabolism of phenylacetic acids in Azoarcus evansii . Arch Microbiol178:180–192[CrossRef]
    [Google Scholar]
  37. Moreno-Ruiz E., Santero E., Hernáez M. J., Martínez-Pérez O.. 2003; Identification and functional characterization of Sphingomonas macrogolitabida strain TFA genes involved in the first two steps of the tetralin catabolic pathway. J Bacteriol185:2026–2030[CrossRef]
    [Google Scholar]
  38. Navarro-Llorens J. M., Patrauchan M. A., Stewart G. R., Davies J. E., Eltis L. D., Mohn W. W.. 2005; Phenylacetate catabolism in Rhodococcus sp. strain RHA1: a central pathway for degradation of aromatic compounds. J Bacteriol187:4497–4504[CrossRef]
    [Google Scholar]
  39. Nelson K. E., Weinel C., Paulsen I. T., Dodson R. J., Hilbert H., Fouts D. E., Gill S. R., Pop M., other authors Martins dos Santos V. A.. 2002; Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol4:799–808[CrossRef]
    [Google Scholar]
  40. O'Leary N. D., O'Connor K. E., Ward P., Goff M., Dobson A. D. W.. 2005; Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. Appl Environ Microbiol71:4380–4387[CrossRef]
    [Google Scholar]
  41. Olivera E. R., Moreno M. A., Luengo J. M., Miñambres B., García B., Muñiz C., Ferrández A., Díaz E., García J. L.. 1998; Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci U S A95:6419–6424[CrossRef]
    [Google Scholar]
  42. Rost R., Hass S., Hammer E., Herrmann H., Burchhardt G.. 2002; Molecular analysis of aerobic phenylacetate degradation in Azoarcus evansii . Mol Genet Genomics267:656–663[CrossRef]
    [Google Scholar]
  43. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene145:69–73[CrossRef]
    [Google Scholar]
  45. Serina S., Nozza F., Nicastro G., Faggioni F., Mottl H., Deho G., Polissi A.. 2004; Scanning the Escherichia coli chromosome by random transposon mutagenesis and multiple phenotypic screening. Res Microbiol155:692–701[CrossRef]
    [Google Scholar]
  46. Song F., Zhuang Z., Finci L., Dunaway-Mariano D., Kniewel R., Buglino J. A., Solorzano V., Wu J., Lima C. D.. 2006; Structure, function, and mechanism of the phenylacetate pathway hot dog-fold thioesterase PaaI. J Biol Chem281:11028–11038[CrossRef]
    [Google Scholar]
  47. Ward P. G., O'Connor K. E.. 2005; Induction and quantification of the phenylacyl-CoA ligase enzyme activities in Pseudomonas putida CA-3 grown on aromatic carboxylic acids. FEMS Microbiol Lett251:227–232[CrossRef]
    [Google Scholar]
  48. Zaar A., Gescher J., Eisenreich W., Fuchs G., Bächer A.. 2004; New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii . Mol Microbiol54:223–238[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002444-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002444-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error