1887

Abstract

Streptococcal plasmid pIP501 uses antisense RNA-mediated transcriptional attenuation to regulate its replication. Previous assays suggested that binding intermediates between RNAII (sense RNA) and RNAIII (antisense RNA) are sufficient for inhibition, and a U-turn structure on RNAII loop L1 was found to be crucial for the interaction with RNAIII. Here, sequence and structural requirements for an efficient RNAII–RNAIII interaction were investigated. A detailed probing of RNA secondary structure combined with single-round transcription assays indicated that complex formation between the two molecules progresses into the lower stems of both loop pairs of the sense and antisense RNAs, but that the complex between RNAII and RNAIII is not a full duplex. Stem–loops L3 and L4 were required to be linked to one other for efficient contact with the complementary loops L2 and L1 of the sense RNA, indicating a simultaneous interaction between these two loop pairs. Thereby, the sequence and length of the spacer connecting L3 and L4 were shown not to be important for inhibition.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002329-0
2007-02-01
2020-07-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/420.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002329-0&mimeType=html&fmt=ahah

References

  1. Asano K., Mizobuchi K.. 2000; Structural analysis of late intermediate complex formed between plasmid ColIb-P9 Inc RNA and its target RNA. How does a single antisense RNA repress translation of two genes at different rates?. J Biol Chem275:1269–1274[CrossRef]
    [Google Scholar]
  2. Brantl S.. 1994; The copR gene product of plasmid pIP501 acts as a transcriptional repressor at the essential repR promoter. Mol Microbiol14:473–483[CrossRef]
    [Google Scholar]
  3. Brantl S.. 2004; Plasmid replication controlled by antisense RNAs. In The Biology of Plasmids, chapter 3 pp47–62 Edited by Funnell B., Phillips G.. Washington, DC: AMS Press;
    [Google Scholar]
  4. Brantl S., Behnke D.. 1992; Copy number control of the streptococcal plasmid pIP501 occurs at three levels. Nucleic Acids Res20:395–400[CrossRef]
    [Google Scholar]
  5. Brantl S., Wagner E. G. H.. 1994; Antisense RNA-mediated transcriptional attenuation occurs faster than stable antisense/target RNA pairing: an in vitro study of plasmid pIP501. EMBO J13:3599–3607
    [Google Scholar]
  6. Brantl S., Wagner E. G. H.. 1996; An unusually long-lived antisense RNA in plasmid copy number control: in vivo RNAs encoded by the streptococcal plasmid pIP501. J Mol Biol255:275–288[CrossRef]
    [Google Scholar]
  7. Brantl S., Wagner E. G. H.. 1997; Dual function of the copR gene product of plasmid pIP501. J Bacteriol179:7016–7024
    [Google Scholar]
  8. Brantl S., Wagner E. G. H.. 2000; Antisense RNA-mediated transcriptional attenuation: an in vitro study of plasmid pT181. Mol Microbiol35:1469–1482
    [Google Scholar]
  9. Brantl S., Birch-Hirschfeld E., Behnke D.. 1993; RepR protein expression on plasmid pIP501 is controlled by an antisense RNA-mediated transcription attenuation mechanism. J Bacteriol175:4052–4061
    [Google Scholar]
  10. Brunel C., Romby P.. 2000; Probing RNA structure in solution. Methods Enzymol318:3–21
    [Google Scholar]
  11. Greenfield T. J., Franch T., Gerdes K., Weaver K. E.. 2001; Antisense RNA regulation of the par post-segregational killing system: structural analysis and mechanism of binding of the antisense RNA, RNAII and its target, RNAI. Mol Microbiol42:527–537[CrossRef]
    [Google Scholar]
  12. Gubbins M. J., Arthur D. C., Ghetu A. F., Glover J. N. M., Frost L. S.. 2003; Characterizing the structural features of RNA/RNA interactions of the F-plasmid FinOP fertility inhibition system. J Biol Chem278:27663–27671[CrossRef]
    [Google Scholar]
  13. Heidrich N., Brantl S.. 2003; Antisense-RNA mediated transcriptional attenuation: importance of a U-turn loop structure in the target RNA of plasmid pIP501 for efficient inhibition by the antisense RNA. J Mol Biol333:917–929[CrossRef]
    [Google Scholar]
  14. Hjalt T., Wagner E. G. H.. 1992; The effect of loop size in antisense and target RNAs on the efficiency of antisense RNA control. Nucleic Acids Res20:6723–6732[CrossRef]
    [Google Scholar]
  15. Hjalt T., Wagner E. G. H.. 1995; Bulged-out nucleotides in an antisense RNA are required for rapid target RNA binding in vitro and inhibition in vivo . Nucleic Acids Res23:580–587[CrossRef]
    [Google Scholar]
  16. Kolb F. A., Engdahl H. M., Ehresmann B., Ehresmann C., Westhof E., Wagner E. G. H., Romby P., Slagter-Jäger J. G.. 2000a; Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA. EMBO J19:5905–5915[CrossRef]
    [Google Scholar]
  17. Kolb F. A., Malmgren C., Westhof E., Ehresmann C., Ehresmann B., Wagner E. G. H., Romby P.. 2000b; An unusual structure formed by antisense-target RNA binding involves an extended kissing complex with a four-way junction and a side-by-side helical alignment. RNA6:311–324[CrossRef]
    [Google Scholar]
  18. Kolb F. A., Westhof E., Ehresmann B., Ehresmann C., Wagner E. G. H., Romby P.. 2001; Four-way junctions in antisense RNA-mRNA complexes involved in plasmid replication control: a common theme?. J Mol Biol309:605–614[CrossRef]
    [Google Scholar]
  19. Malmgren C., Wagner E. G. H., Ehresmann C., Ehresmann B., Romby P.. 1997; Antisense RNA control of plasmid R1 replication: the dominant product of the antisense RNA-mRNA binding is not a full RNA duplex. J Biol Chem272:12508–12512[CrossRef]
    [Google Scholar]
  20. Rasmussen A. A., Eriksen M., Gilany K., Udesen C., Franch T., Petersen C., Valentin-Hansen P.. 2005; Regulation of ompA mRNA stability: the role of a small regulatory RNA in growth phase-dependent control. Mol Microbiol58:1421–1429[CrossRef]
    [Google Scholar]
  21. Thisted T., Sørensen N., Wagner E. G. H., Gerdes K.. 1994; Mechanism of postsegregational killing: Sok antisense RNA interacts with Hok mRNA via its 5′-end single-stranded leader and competes with the 3′-end of Hok mRNA for binding to the mok translational initiation region. EMBO J13:1960–1968
    [Google Scholar]
  22. Udekwu K. I., Darfeuille F., Vogel J., Reimegard J., Holmqvist E., Wagner E. G. H.. 2005; Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev19:2355–2366[CrossRef]
    [Google Scholar]
  23. Wagner E. G. H., Brantl S.. 1998; Kissing and RNA stability in antisense control of plasmid replication. Trends Biochem Sci23:451–454[CrossRef]
    [Google Scholar]
  24. Wagner E. G. H., Altuvia S., Romby P.. 2002; Antisense RNAs in bacteria and their genetic elements. In Adv in Genetics pp361–398 Edited by Dunlap J. C., Wu C.. London: Academic Press;
    [Google Scholar]
  25. Zhang A., Wassarman K. M., Ortega J., Steven A. C., Storz G.. 2002; The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell9:11–22[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002329-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002329-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error