1887

Abstract

, an important phytopathogenic bacterium, causes serious plant diseases including Pierce's disease of grapevine. It is reported here that type I and type IV pili of play different roles in twitching motility, biofilm formation and cell–cell aggregation. Type I pili are particularly important for biofilm formation and aggregation, whereas type IV pili are essential for motility, and also function in biofilm formation. Thirty twitching-defective mutants were generated with an EZ : : TN transposome system, and several type-IV-pilus-associated genes were identified, including , , , and . Mutations in , , or resulted in a twitch-minus phenotype, whereas the mutant was twitching reduced. A mutation in resulted in a biofilm-defective and twitching-enhanced phenotype. A double mutant was twitch minus, and produced almost no visible biofilm. Transmission electron microscopy revealed that the pili, when present, were localized to one pole of the cell. Both type I and type IV pili were present in the wild-type isolate and the mutant, whereas only type I pili were present in the twitch-minus mutants. The mutant produced no type I pili. The double mutant produced neither type I nor type IV pili.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002311-0
2007-03-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/719.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002311-0&mimeType=html&fmt=ahah

References

  1. Alm, R. A., Hallinan, J. P., Watson, A. A. & Mattick, J. S. ( 1996; ). Fimbrial biogenesis genes of Pseudomonas aeruginosa: pilW and pilX increase the similarity of type 4 fimbriae to the GSP protein-secretion systems and pilY1 encodes a gonococcal PilC homologue. Mol Microbiol 22, 161–173.[CrossRef]
    [Google Scholar]
  2. Blumer, C., Kleefeld, A., Lehnen, D., Heintz, M., Dobrindt, U., Nagy, G., Michaelis, K., Emody, L., Polen, T. & other authors ( 2005; ). Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli. Microbiology 151, 3287–3298.[CrossRef]
    [Google Scholar]
  3. Carbonnelle, E., Hélaine, S., Prouvensier, L., Nassif, X. & Pelicic, V. ( 2005; ). Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol Microbiol 55, 54–64.
    [Google Scholar]
  4. Comolli, J. C., Hauser, A. R., Waite, L., Whitchurch, C. B., Mattick, J. S. & Engel, J. N. ( 1999; ). Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect Immun 67, 3625–3630.
    [Google Scholar]
  5. Davis, M. J., French, W. J. & Schaad, N. W. ( 1981; ). Axenic culture of the bacteria associated with phony disease of peach and plum leaf scald. Curr Microbiol 6, 309–314.[CrossRef]
    [Google Scholar]
  6. de Souza, A. A., Takita, M. A., Coletta-Filho, H. D., Caldana, C., Yanai, G. M., Muto, N. H., de Oliveira, R. C., Nunes, L. R. & Machado, M. A. ( 2004; ). Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro. FEMS Microbiol Lett 237, 341–353.
    [Google Scholar]
  7. Feil, H., Feil, W. S., Detter, J. C., Purcell, A. H. & Lindow, S. E. ( 2003; ). Site-directed disruption of the fimA and fimF genes of Xylella fastidiosa. Phytopathology 93, 675–682.[CrossRef]
    [Google Scholar]
  8. Guilhabert, M. R. & Kirkpatrick, B. C. ( 2005; ). Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute to X. fastidiosa biofilm maturation and colonization and attenuate virulence. Mol Plant Microbe Interact 18, 856–868.[CrossRef]
    [Google Scholar]
  9. Guilhabert, M. R., Hoffman, L. M., Mills, D. A. & Kirkpatrick, B. C. (2001; ). Transposon mutagenesis of Xylella fastidiosa by electroporation of Tn5 synaptic complexes. Mol Plant Microbe Interact 14, 701–706.[CrossRef]
    [Google Scholar]
  10. Hazlett, L. D., Moon, M. M., Singh, A., Berk, R. S. & Rudner, X. L. ( 1991; ). Analysis of adhesion, piliation, protease production and ocular infectivity of several P. aeruginosa strains. Curr Eye Res 10, 351–362.[CrossRef]
    [Google Scholar]
  11. Hélaine, S., Carbonnelle, E., Prouvensier, L., Beretti, J.-L., Nassif, X. & Pelicic, V. ( 2005; ). PilX, a pilus-associated protein essential for bacterial aggregation, is a key to pilus-facilitated attachment of Neisseria meningitidis to human cells. Mol Microbiol 55, 65–77.
    [Google Scholar]
  12. Hill, B. L. & Purcell, A. H. ( 1995; ). Acquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala atropunctata. Phtopathology 85, 209–212.[CrossRef]
    [Google Scholar]
  13. Hobbs, M., Collie, E. S. R., Free, P. D., Livingston, S. P. & Mattick, J. S. ( 1993; ). PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 7, 669–682.[CrossRef]
    [Google Scholar]
  14. Hopkins, D. L. ( 1989; ). Xylem-limited bacterial pathogen of plants. Annu Rev Phytopathol 27, 271–290.[CrossRef]
    [Google Scholar]
  15. Kang, Y., Liu, H., Genin, S., Schell, M. A. & Denny, T. P. ( 2002; ). Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol 46, 427–437.[CrossRef]
    [Google Scholar]
  16. Liu, H., Kang, Y., Genin, S., Schell, M. A. & Denny, T. P. ( 2001; ). Twitching motility of Ralstonia solanacearum requires a type IV pilus system. Microbiology 147, 3215–3229.
    [Google Scholar]
  17. Marques, L. L. R., Ceri, H., Manfio, G. P., Reid, D. M. & Olson, M. E. ( 2002; ). Characterization of biofilm formation by Xylella fastidiosa in vitro. Plant Dis 86, 633–638.[CrossRef]
    [Google Scholar]
  18. Martin, P. R., Watson, A. A., McCaul, T. F. & Mattick, J. S. ( 1995; ). Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 16, 497–508.[CrossRef]
    [Google Scholar]
  19. Mattick, J. S. ( 2002; ). Type IV pili and twitching motility. Annu Rev Microbiol 56, 289–314.[CrossRef]
    [Google Scholar]
  20. Meng, Y., Li, Y., Galvani, C. D., Hao, G., Turner, J. N., Burr, T. J. & Hoch, H. C. ( 2005; ). Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187, 5560–5567.[CrossRef]
    [Google Scholar]
  21. Merz, A. J. & So, M. ( 2000; ). Interactions of pathogenic Neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol 16, 423–457.[CrossRef]
    [Google Scholar]
  22. O'Toole, G. A. & Kolter, R. ( 1998; ). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30, 295–304.[CrossRef]
    [Google Scholar]
  23. O'Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B. & Kolter, R. ( 1999; ). Genetic approaches to study of biofilms. Methods Enzymol 310, 91–109.
    [Google Scholar]
  24. Purcell, A. H. ( 1996; ). Fastidious xylem-limited bacterial plant pathogens. Annu Rev Phytopathol 34, 131–151.[CrossRef]
    [Google Scholar]
  25. Purcell, A. H. ( 1997; ). Xylella fastidiosa, a regional problem or global threat? J Plant Pathology 79, 99–105.
    [Google Scholar]
  26. Rojas, C. M., Jam, J. H., Deng, W., Doyle, J. J. & Collmer, A. ( 2002; ). HecA, a member of a class of adhesions produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci U S A 99, 13142–13147.[CrossRef]
    [Google Scholar]
  27. Scheuerpflug, I., Rudel, T., Ryll, R., Pandit, J. & Meyer, T. F. ( 1999; ). Roles of PilC and PilE proteins in pilus-mediated adherence of Neisseria gonorrhoeae and Neisseria meningitidis to human erythrocytes and endothelial and epithelial cells. Infect Immun 67, 834–843.
    [Google Scholar]
  28. Schilling, J. D., Mulvey, M. A. & Hultgren, S. J. ( 2001; ). Structure and function of Escherichia coli type I pili: new insight into the pathogenesis of urinary tract infections. J Infect Dis 183, S36–40.[CrossRef]
    [Google Scholar]
  29. Tubajika, K. M., Civerolo, E. L., Ciomperlik, M. A., Luvisi, D. A. & Hashim, J. M. ( 2004; ). Analysis of the spatial patterns of Pierce's disease incidence in the lower San Joaquin Valley in California. Phytopathology 94, 1136–1144.[CrossRef]
    [Google Scholar]
  30. Van Sluys, M. A., de Oliveira, M. C., Monteiro-Vitorello, C. B., Miyaki, C. Y., Furlan, L. R., Camargo, L. E. A., da Silva, A. C. R., Moon, D. H., Takita, M. A. & other authors ( 2003; ). Comparative analyses of the complete genome sequences of Pierce's disease and citrus variegated chlorosis strains of Xylella fastidiosa. J Bacteriol 185, 1018–1026.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002311-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002311-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 719&endash;726

A video of the following is available here. Alternatively, visit the authors own site at www.nysaes.cornell.edu/pp/faculty/hoch/movies(movie 9).

mutant TM14 ( ) is shown moving via type IV pili twitching-motility (right to left) against a stream of medium flowing 50,000 μm per minute from left to right in a microfluidic chamber. Cells observed travelling from left to right are either floating free with the medium or they are dragged on the chamber surface with the flow of medium.



This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error