1887

Abstract

An unknown cytotoxin was identified in the culture supernatant of type C. The cytotoxin, named TpeL, which was purified using mAb-based affinity chromatography, had a lethal activity of 62 minimum lethal dose (MLD) mg in mice and a cytotoxic activity of 6.2×10 cytotoxic units (CU) mg in Vero cells. The nucleotide sequence of TpeL was determined. The entire ORF had a length of 4953 bases, and the same nucleotide sequence was not recorded in the GenBank/EMBL/DDBJ databases. The molecular mass calculated from the deduced amino acid sequence was 191 kDa, and a signal peptide region was not found within the ORF. The deduced amino acid sequence exhibited 30–39 % homology to toxins A (TcdA) and B (TcdB), lethal toxin (TcsL) and alpha-toxin (TcnA). The amino acid sequence of TpeL is shorter than these toxins, and the homologous region was located at the N-terminal site. Eighteen strains of types A, B and C were surveyed for the presence of the gene by PCR. The gene was detected in all type B (one strain) and C strains (five strains), but not in any type A strains (12 strains). TpeL was detected in culture filtrates of the five type C strains by dot-blot analysis, but not in the type B strain. It was concluded that TpeL is a novel toxin similar to the known large clostridial cytotoxins. Furthermore, the data indicated that TpeL is produced by many type C strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002287-0
2007-04-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1198.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002287-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Amimoto, K., Sasaki, O., Isogai, M., Kitajima, T., Oishi, E., Okada, N. & Yasuhara, H. ( 1998; ). The protective effect of Clostridium novyi type B alpha-toxoid against challenge with spores in guinea pigs. J Vet Med Sci 60, 681–685.[CrossRef]
    [Google Scholar]
  3. Amimoto, K., Oishi, E., Yssuhara, H., Sasaki, O., Katayama, S., Kitajima, T., Izumida, A. & Hirahara, T. ( 2001; ). Protective effects of Clostridium sordellii LT and HT toxoids against challenge with spores in guinea pigs. J Vet Med Sci 63, 879–883.[CrossRef]
    [Google Scholar]
  4. Ball, D. W., Van Tassell, R. L., Roberts, M. D., Hahn, P. E., Lyerly, D. M. & Wilkins, T. D. ( 1993; ). Purification and characterization of alpha-toxin produced by Clostridium novyi type A. Infect Immun 61, 2912–2918.
    [Google Scholar]
  5. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. ( 2004; ). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783–795.[CrossRef]
    [Google Scholar]
  6. Busch, C., Hofmann, F., Gerhard, R. & Aktories, K. ( 2000a; ). Involvement of a conserved tryptophan residue in the UDP-glucose binding of large clostridial cytotoxin glycosyltransferases. J Biol Chem 275, 13228–13234.[CrossRef]
    [Google Scholar]
  7. Busch, C., Schömig, K., Hofmann, F. & Aktories, K. ( 2000b; ). Characterization of the catalytic domain of Clostridium novyi alpha-toxin. Infect Immun 68, 6378–6383.[CrossRef]
    [Google Scholar]
  8. Ciesla, W. P., Jr & Bobak, D. A. ( 1998; ). Clostridium difficile toxins A and B are cation-dependent UDP-glucose hydrolases with differing catalytic activities. J Biol Chem 273, 16021–16026.[CrossRef]
    [Google Scholar]
  9. Duffy, L. K., McDonel, J. L., McClane, B. A. & Kurosky, A. ( 1982; ). Clostridium perfringens type A enterotoxin: characterization of the amino-terminal region. Infect Immun 38, 386–388.
    [Google Scholar]
  10. Faust, C., Ye, B. & Song, K. P. ( 1998; ). The enzymatic domain of Clostridium difficile toxin A is located within its N-terminal region. Biochem Biophys Res Commun 251, 100–105.[CrossRef]
    [Google Scholar]
  11. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  12. Gibert, M., Jolivet-Reynaud, C. & Popoff, M. R. ( 1997; ). Beta2-toxin, a novel toxin produced by Clostridium perfringens. Gene 203, 65–73.[CrossRef]
    [Google Scholar]
  13. Herholz, C., Miserez, R., Nicolet, J., Frey, J., Popoff, M., Gibert, M., Gerber, H. & Straub, R. ( 1999; ). Prevalence of beta2-toxigenic Clostridium perfringens in horses with intestinal disorders. J Clin Microbiol 37, 358–361.
    [Google Scholar]
  14. Hofmann, F., Busch, C., Prepens, U., Just, I. & Aktories, K. ( 1997; ). Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J Biol Chem 272, 11074–11078.[CrossRef]
    [Google Scholar]
  15. Jolivet-Reynaud, C., Cavaillon, J. M. & Alouf, J. E. ( 1982; ). Selective cytotoxicity of Clostridium perfringens delta-toxin on rabbit leukocytes. Infect Immun 38, 860–864.
    [Google Scholar]
  16. Katayama, S., Dupuy, B., Daube, G., China, B. & Cole, S. T. ( 1996; ). Genome mapping of Clostridium perfringens strains with I-CeuI shows many virulence genes to be plasmid-borne. Mol Gen Genet 251, 720–726.
    [Google Scholar]
  17. Kato, H., Kato, N., Watanabe, K., Iwai, N., Nakamura, H., Yamamoto, T., Suzuki, K., Kim, S. M., Chong, Y. & Wasito, E. B. ( 1998; ). Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. J Clin Microbiol 36, 2178–2182.
    [Google Scholar]
  18. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  19. Lawrence, G. & Walker, P. D. ( 1976; ). Pathogenesis of enteritis necroticans in Papua New Guinea. Lancet 17, 125–126.
    [Google Scholar]
  20. Manteca, C., Daube, G., Jauniaux, T., Linden, A., Pirson, V., Detilleux, J., Ginter, A., Coppe, P., Kaeckenbeeck, A. & Mainil, J. G. ( 2002; ). A role for the Clostridium perfringens β2 toxin in bovine enterotoxaemia? Vet Microbiol 86, 191–202.[CrossRef]
    [Google Scholar]
  21. McDonel, J. L. & McClane, B. A. ( 1981; ). Highly sensitive assay for Clostridium perfringens enterotoxin that uses inhibition of plating efficiency of Vero cells grown in culture. J Clin Microbiol 13, 940–946.
    [Google Scholar]
  22. Mollby, R. & Holme, T. ( 1976; ). Production of phospholipase C (alpha-toxin), haemolysins and lethal toxins by Clostridium perfringens types A to D. J Gen Microbiol 96, 137–144.[CrossRef]
    [Google Scholar]
  23. Nagahama, M., Kihara, A., Miyawaki, T., Mukai, M., Sakaguchi, Y., Ochi, S. & Sakurai, J. ( 1999; ). Clostridium perfringens β-toxin is sensitive to thiol-group modification but does not require a thiol group for lethal activity. Biochim Biophys Acta 1454, 97–105.[CrossRef]
    [Google Scholar]
  24. Nagahama, M., Hayashi, S., Morimitsu, S. & Sakurai, J. ( 2003; ). Biological activities and pore formation of Clostridium perfringens beta toxin in HL 60 cells. J Biol Chem 278, 36934–36941.[CrossRef]
    [Google Scholar]
  25. Nakamura, S., Ogura, H., Tanaka, J., Tanabe, N., Yamakawa, K., Hatano, M. & Nishida, S. ( 1984; ). Difference in susceptibility of various cell cultures to cytotoxic culture filtrates of Clostridium sordellii. Microbiol Immunol 28, 493–497.[CrossRef]
    [Google Scholar]
  26. Niilo, L. ( 1987; ). Toxigenic characteristics of Clostridium perfringens type C in enterotoxemia of domestic animals. Can J Vet Res 51, 224–228.
    [Google Scholar]
  27. O'Brien, D. K. & Melville, S. B. ( 2004; ). Effects of Clostridium perfringens alpha-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues. Infect Immun 72, 5204–5215.[CrossRef]
    [Google Scholar]
  28. Popoff, M. R. ( 1987; ). Purification and characterization of Clostridium sordellii lethal toxin and cross-reactivity with Clostridium difficile cytotoxin. Infect Immun 55, 35–43.
    [Google Scholar]
  29. Reed, L. J. & Muench, H. ( 1938; ). A simple method of estimating fifty per cent endpoints. Am J Hyg 27, 493–496.
    [Google Scholar]
  30. Roehm, N. W., Rodgers, G. H., Hatfield, S. M. & Glasebrook, A. L. ( 1991; ). An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods 142, 257–265.[CrossRef]
    [Google Scholar]
  31. Rupnik, M., Dupuy, B., Fairweather, N. F., Gerding, D. N., Johnson, S., Just, I., Lyerly, D. M., Popoff, M. R., Rood, J. I. & other authors ( 2005; ). Revised nomenclature of Clostridium difficile toxins and associated genes. J Med Microbiol 54, 113–117.[CrossRef]
    [Google Scholar]
  32. Saitou, N. & Nei, M. ( 1987; ). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  33. Shimizu, T., Ohtani, K., Hirakawa, H., Ohshima, K., Yamashita, A., Shiba, T., Ogasawara, N., Hattori, M., Kuhara, S. & Hayashi, H. ( 2002; ). Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A 99, 996–1001.[CrossRef]
    [Google Scholar]
  34. Singh, U., Mitic, L. L., Wieckowski, E. U., Anderson, J. M. & McClane, B. A. ( 2001; ). Comparative biochemical and immunocytochemical studies reveal differences in the effects of Clostridium perfringens enterotoxin on polarized CaCo-2 cells versus Vero cells. J Biol Chem 276, 33402–33412.[CrossRef]
    [Google Scholar]
  35. Springer, S. & Selbitz, H. J. ( 1999; ). The control of necrotic enteritis in sucking piglets by means of a Clostridium perfringens toxoid vaccine. FEMS Immunol Med Microbiol 24, 333–336.[CrossRef]
    [Google Scholar]
  36. Thelestam, M. & Möllby, R. ( 1975; ). Sensitive assay for detection of toxin-induced damage to the cytoplasmic membrane of human diploid fibroblasts. Infect Immun 12, 225–232.
    [Google Scholar]
  37. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  38. Titball, R. W., Hunter, S. E., Martin, K. L., Morris, B. C., Shuttleworth, A. D., Rubidge, T., Anderson, D. W. & Kelly, D. C. ( 1989; ). Molecular cloning and nucleotide sequence of the alpha-toxin (phospholipase C) of Clostridium perfringens. Infect Immun 57, 367–376.
    [Google Scholar]
  39. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci 76, 4350–4354.[CrossRef]
    [Google Scholar]
  40. Tsutsui, K., Minami, J., Matsushita, O., Katayama, S., Taniguchi, Y., Nakamura, S., Nishioka, M. & Okabe, A. ( 1995; ). Phylogenetic analysis of phospholipase C genes from Clostridium perfringens types A to E and Clostridium novyi. J Bacteriol 177, 7164–7170.
    [Google Scholar]
  41. Tweten, R. K. ( 2001; ). Clostridium perfringens beta toxin and Clostridium septicum alpha toxin: their mechanisms and possible role in pathogenesis. Vet Microbiol 82, 1–9.[CrossRef]
    [Google Scholar]
  42. von Eichel-Streiber, C., Sauerborn, M. & Kuramitsu, H. K. ( 1992; ). Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus mutans glucosyltransferases. J Bacteriol 174, 6707–6710.
    [Google Scholar]
  43. Waters, M., Savoie, A., Garmory, H. S., Bueschel, D., Popoff, M. R., Songer, J. G., Titball, R. W., McClane, B. A. & Sarker, M. R. ( 2003; ). Genotyping and phenotyping of beta2-toxigenic Clostridium perfringens fecal isolates associated with gastrointestinal diseases in piglets. J Clin Microbiol 41, 3584–3591.[CrossRef]
    [Google Scholar]
  44. Weiss, K. F. & Strong, D. H. ( 1967; ). Some properties of heat-resistant and heat-sensitive strains of Clostridium perfringens. I. Heat resistance and toxigenicity. J Bacteriol 93, 21–26.
    [Google Scholar]
  45. Yoo, H. S., Lee, S. U., Park, K. Y. & Park, Y. H. ( 1997; ). Molecular typing and epidemiological survey of prevalence of Clostridium perfringens types by multiplex PCR. J Clin Microbiol 35, 228–232.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002287-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002287-0
Loading

Data & Media loading...

vol. , part 4, pp. 1198 - 1206

Multiple sequence alignment of TpeL, TcdA, TcdB, TcsL and TcnA [ PDF] (134 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error