1887

Abstract

is an opportunistic pathogen that causes serious respiratory disease in the immune-compromised host. Using an aerosol infection model, 11 inbred mouse strains (129/Sv, A/J, BALB/c, C3H/HeN, C57BL/6, DBA/2, FVB, B10.D2/oSnJ, B10.D2/nSnJ, AKR/J and SWR/J) were tested for increased susceptibility to lung colonization. DBA/2 was the only mouse strain that had increased bacterial counts in the lung within 6 h post-infection. This deficiency incited a marked inflammatory response with reduced bacterial lung clearance and a mortality rate of 96.7 %. DBA/2 mice displayed progressive deterioration of lung pathology with extensive alveolar exudate and oedema formation at 48–72 h post-infection. The neutrophil-specific myeloperoxidase activity remained elevated throughout infection, suggesting that the increased leukocyte infiltration into alveoli caused acute inflammatory lung injury. DBA/2 mice lack the haemolytic complement; however, three additional mouse strains (AKR/J, SWR/J and A/J) with the same defect effectively cleared the infection, indicating that other host factors are involved in defence. Bone marrow-derived macrophages of DBA/2 showed an initial increase in phagocytosis, while their bactericidal activity was reduced compared to that of C57BL/6 macrophages. Comparison of pulmonary cytokine profiles of DBA/2 versus C57BL/6 or C3H/HeN indicated that DBA/2 had similar increases in tumour necrosis factor (TNF)-, KC and interleukin (IL)-1a as C3H/HeN, but showed specific induction of IL-17, monocyte chemotactic protein (MCP)-1 and vascular endothelial growth factor (VEGF). Together, DBA/2 mice have a defect in the initial lung defence against colonization, which causes the host to produce a greater, but damaging, inflammatory response. Such a response may originate from the reduced antimicrobial activity of DBA/2 macrophages.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002261-0
2007-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/968.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002261-0&mimeType=html&fmt=ahah

References

  1. Bless N. M., Huber-Lang M., Guo R. F., Warner R. L., Schmal H., Czermak B. J., Shanley T. P., Crouch L. D., Lentsch A. B. other authors 2000; Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats. J Immunol 164:2650–2659 [CrossRef]
    [Google Scholar]
  2. Bradley P. P., Priebat D. A., Christensen R. D., Rothstein G. 1982; Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209 [CrossRef]
    [Google Scholar]
  3. Campbell P. A., Canono B. P., Drevets D. A. 2005; Measurement of bacterial ingestion and killing by macrophages. In Current Protocols in Immunology pp 14.16.11–14.16.13 Edited by Coligan J. E., Bierer B., Kruisbeek A. M., Margulies D. H., Shevach E. M., Strober W. Somerset, NJ: Wiley;
    [Google Scholar]
  4. Cerquetti M. C., Sordelli D. O., Ortegon R. A., Bellanti J. A. 1983; Impaired lung defenses against Staphylococcus aureus in mice with hereditary deficiency of the fifth component of complement. Infect Immun 41:1071–1076
    [Google Scholar]
  5. Cerquetti M. C., Sordelli D. O., Bellanti J. A., Hooke A. M. 1986; Lung defenses against Pseudomonas aeruginosa in C5-deficient mice with different genetic backgrounds. Infect Immun 52:853–857
    [Google Scholar]
  6. Cheung D. O., Halsey K., Speert D. P. 2000; Role of pulmonary alveolar macrophages in defense of the lung against Pseudomonas aeruginosa . Infect Immun 68:4585–4592 [CrossRef]
    [Google Scholar]
  7. Cinader B., Dubiski S., Wardlaw A. C. 1966; Genetics of MuB1 and of a complement defect in inbred strains of mice. Genet Res 7:32–43 [CrossRef]
    [Google Scholar]
  8. Daniel D. S., Dai G., Singh C. R., Lindsey D. R., Smith A. K., Dhandayuthapani S., Jagannath C., Hunter R. L. Jr 2006; The reduced bactericidal function of complement C5-deficient murine macrophages is associated with defects in the synthesis and delivery of reactive oxygen radicals to mycobacterial phagosomes. J Immunol 177:4688–4698 [CrossRef]
    [Google Scholar]
  9. Davies J. Q., Gordon S. 2005; Isolation and culture of murine macrophages. In Basic Cell Culture Protocols pp 91–104 Edited by Helgason C. D., Miller C. L. Totowa, NJ: Humana Press;
    [Google Scholar]
  10. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298 [CrossRef]
    [Google Scholar]
  11. DeFrances C. J., Hall M. J., Podgornik M. N. 2005). 2003; National Hospital Discharge Survey. Advance Data-CDC 359:1–20
    [Google Scholar]
  12. Fortier A. H., Falk L. A. 2005; Isolation of murine macrophages. In Current Protocols in Immunology pp 14.11.11–14.11.19 Edited by Coligan J. E., Bierer B., Kruisbeek A. M., Margulies D. H., Shevach E. M., Strober W. Somerset, NJ: Wiley;
    [Google Scholar]
  13. Fujimoto J., Wiener-Kronish J. P., Hashimoto S., Sawa T. 2002; Effects of Cl2MDP-encapsulating liposomes in a murine model of Pseudomonas aeruginosa -induced sepsis. J Liposome Res 12:239–257 [CrossRef]
    [Google Scholar]
  14. Gordon S. 2003; Alternative activation of macrophages. Nat Rev Immunol 3:23–35 [CrossRef]
    [Google Scholar]
  15. Haddad E.-B., McCluskie K., Birrell M. A., Dabrowski D., Pecoraro M., Underwood S., Chen B., De Sanctis G. T., Webber S. E. other authors 2002; Differential effects of ebselen on neutrophil recruitment, chemokine, and inflammatory mediator expression in a rat model of lipopolysaccharide-induced pulmonary inflammation. J Immunol 169:974–982 [CrossRef]
    [Google Scholar]
  16. Head N. E., Yu H. 2004; Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa : biofilm formation, virulence, and genome diversity. Infect Immun 72:133–144 [CrossRef]
    [Google Scholar]
  17. Huber-Lang M., Sarma J. V., Zetoune F. S., Rittirsch D., Neff T. A., McGuire S. R., Lambris J. D., Warner R. L., Flierl M. A. other authors 2006; Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12:682–687 [CrossRef]
    [Google Scholar]
  18. Hume D. A., Ross I. L., Himes S. R., Sasmono R. T., Wells C. A., Ravasi T. 2002; The mononuclear phagocyte system revisited. J Leukoc Biol 72:621–627
    [Google Scholar]
  19. Keicho N., Kudoh S. 2002; Diffuse panbronchiolitis: role of macrolides in therapy. Am J Respir Med 1:119–131 [CrossRef]
    [Google Scholar]
  20. Larsen G. L., Mitchell B. C., Harper T. B., Henson P. M. 1982; The pulmonary response of C5 sufficient and deficient mice to Pseudomonas aeruginosa . Am Rev Respir Dis 126:306–311
    [Google Scholar]
  21. Laskin D. L., Weinberger B., Laskin J. D. 2001; Functional heterogeneity in liver and lung macrophages. J Leukoc Biol 70:163–170
    [Google Scholar]
  22. Lee S. C., Hua C. C., Yu T. J., Shieh W. B., See L. C. 2005; Risk factors of mortality for nosocomial pneumonia: importance of initial anti-microbial therapy. Int J Clin Pract 59:39–45
    [Google Scholar]
  23. Lee D. G., Urbach J. M., Wu G., Liberati N. T., Feinbaum R. L., Miyata S., Diggins L. T., He J., Saucier M. other authors 2006; Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7:R90 [CrossRef]
    [Google Scholar]
  24. Lohmann-Matthes M. L., Steinmuller C., Franke-Ullmann G. 1994; Pulmonary macrophages. Eur Respir J 7:1678–1689
    [Google Scholar]
  25. Morissette C., Skamene E., Gervais F. 1995; Endobronchial inflammation following Pseudomonas aeruginosa infection in resistant and susceptible strains of mice. Infect Immun 63:1718–1724
    [Google Scholar]
  26. Morissette C., Francoeur C., Darmond-Zwaig C., Gervais F. 1996; Lung phagocyte bactericidal function in strains of mice resistant and susceptible to Pseudomonas aeruginosa . Infect Immun 64:4984–4992
    [Google Scholar]
  27. Orme I. M., Collins F. M. 1994; Mouse model of tuberculosis. In Tuberculosis: Pathogenesis, Protection and Control pp 113–134 Edited by Bloom B. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Park H., Li Z., Yang X. O., Chang S. H., Nurieva R., Wang Y. H., Wang Y., Hood L., Zhu Z. other authors 2005; A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141 [CrossRef]
    [Google Scholar]
  29. Porcheray F., Viaud S., Rimaniol A. C., Leone C., Samah B., Dereuddre-Bosquet N., Dormont D., Gras G. 2005; Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142:481–489
    [Google Scholar]
  30. Priebe G. P., Meluleni G. J., Coleman F. T., Goldberg J. B., Pier G. B. 2003; Protection against fatal Pseudomonas aeruginosa pneumonia in mice after nasal immunization with a live, attenuated aroA deletion mutant. Infect Immun 71:1453–1461 [CrossRef]
    [Google Scholar]
  31. Ramphal R. 2001; Pathogenesis of airway colonization. In Respiratory Infections pp 45–58 Edited by Niederman M. S., Sarosi G. A., Glassroth J. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  32. Rauh M. J., Ho V., Pereira C., Sham A., Sly L. M., Lam V., Huxham L., Minchinton A. I., Mui A., Krystal G. 2005; SHIP represses the generation of alternatively activated macrophages. Immunity 23:361–374 [CrossRef]
    [Google Scholar]
  33. Rubenfeld G. D., Caldwell E., Peabody E., Weaver J., Martin D. P., Neff M., Stern E. J., Hudson L. D. 2005; Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693 [CrossRef]
    [Google Scholar]
  34. Sibille Y., Reynolds H. Y. 1990; Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 141:471–501 [CrossRef]
    [Google Scholar]
  35. Stark M. A., Huo Y., Burcin T. L., Morris M. A., Olson T. S., Ley K. 2005; Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22:285–294 [CrossRef]
    [Google Scholar]
  36. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S. L., Hufnagle W. O., Kowalik D. J. other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  37. Tsuda Y., Takahashi H., Kobayashi M., Hanafusa T., Herndon D. N., Suzuki F. 2004; Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus . Immunity 21:215–226 [CrossRef]
    [Google Scholar]
  38. Wetsel R. A., Fleischer D. T., Haviland D. L. 1990; Deficiency of the murine fifth complement component (C5). A 2-base pair gene deletion in a 5′-exon. J Biol Chem 265:2435–2440
    [Google Scholar]
  39. Yu H., Hanes M., Chrisp C. E., Boucher J. C., Deretic V. 1998a; Microbial pathogenesis in cystic fibrosis: pulmonary clearance of mucoid Pseudomonas aeruginosa and inflammation in a mouse model of repeated respiratory challenge. Infect Immun 66:280–288
    [Google Scholar]
  40. Yu H., Hanes M., Chrisp C. E., Boucher J. C., Deretic V. 1998b; Microbial pathogenesis in cystic fibrosis: pulmonary clearance of mucoid Pseudomonas aeruginosa and inflammation in a mouse model of repeated respiratory challenge. Infect Immun 66:280–288
    [Google Scholar]
  41. Yu H., Head N. E. 2002; Persistent infections and immunity in cystic fibrosis. Front Biosci 7:D442–D457
    [Google Scholar]
  42. Yu H., Nasr S. Z., Deretic V. 2000; Innate lung defenses and compromised Pseudomonas aeruginosa clearance in the malnourished mouse model of respiratory infections in cystic fibrosis. Infect Immun 68:2142–2147 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002261-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002261-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error