1887

Abstract

A novel plasmid named pGdh442 had previously been isolated from a plant strain. This plasmid encodes two interesting properties with applications in the dairy industry: a glutamate dehydrogenase activity that stimulates amino acid conversion to aroma compounds, and cadmium/zinc resistance that can be used as a selectable marker. Moreover, this plasmid can be transferred naturally to other strains, but appears to be incompatible with certain other lactococcal plasmids. During this study, the complete sequence of pGdh442 (68 319 bp) was determined and analysed. This plasmid contains 67 ORFs that include 20 IS elements that may have mediated transfer events between and other genera living in the same biotope, such as , and . Even though it is a low-copy-number plasmid, it is relatively stable due to a theta replication mode and the presence of two genes involved in its maintenance system. However, pGdh442 is incompatible with pSK08-derived protease/lactose plasmids because both possess the same replication and partition system. pGdh442 is not self-transmissible, but can be naturally transmitted via mobilization by conjugative elements carried by the chromosome or by other plasmids, such as the 712-type sex factor, which is widely distributed in . In addition to several genes already found on other plasmids, such as the oligopeptide transport and utilization genes, pGdh442 also carries several genes not yet identified in . Finally, it does not carry genes that would trigger concern over its presence in human food.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002246-0
2007-05-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1664.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002246-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zang J., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A. 2001; The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753 [CrossRef]
    [Google Scholar]
  3. Brown N. L., Barrett S. R., Camakaris J., Lee B. T., Rouch D. A. 1995; Molecular genetics and transport analysis of the copper-resistance determinant ( pco ) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17:1153–1166 [CrossRef]
    [Google Scholar]
  4. Chandler M., Fayet O. 1993; Translational frameshifting in the control of transposition in bacteria. Mol Microbiol 7:497–503 [CrossRef]
    [Google Scholar]
  5. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159
    [Google Scholar]
  6. De Vos W. M., Gasson M. J. 1989; Structure and expression of the Lactococcus lactis gene for phospho- β -galactosidase ( lacG ) in Escherichia coli and L. lactis. J Gen Microbiol 135:1833–1846
    [Google Scholar]
  7. Dougherty B. A., Hill C., Weidman J. F., Richardson D. R., Venter J. C., Ross R. P. 1998; Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147. Mol Microbiol 29:1029–1038 [CrossRef]
    [Google Scholar]
  8. Foley S., Bron S., Venema G., Daly C., Fitzgerald G. F. 1996; Molecular analysis of the replication origin of the Lactococcus lactis plasmid pCJ305. Plasmid 36:125–141 [CrossRef]
    [Google Scholar]
  9. Gasson M. J. 1983; Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9
    [Google Scholar]
  10. Gasson M. J. 1990; In vivo genetic systems in lactic acid bacteria. FEMS Microbiol Rev 7:43–60
    [Google Scholar]
  11. Gasson M. J., Swindell S., Maeda S., Dodd H. M. 1992; Molecular rearrangement of lactose plasmid DNA associated with high-frequency transfer and cell aggregation in Lactococcus lactis 712. Mol Microbiol 6:3213–3223 [CrossRef]
    [Google Scholar]
  12. Gasson M. J., Godon J.-J., Pillidge C. J., Eaton T. J., Jury K., Shearman C. A. 1995; Characterization and exploitation of conjugation in Lactococcus lactis. Int Dairy J 5:757–762 [CrossRef]
    [Google Scholar]
  13. Gordon D., Abajian C., Green P. 1998; Consed: a graphical tool for sequence finishing. Genome Res 8:195–202 [CrossRef]
    [Google Scholar]
  14. Gostick D. O., Griffin H. G., Shearman C. A., Scott C., Green J., Gasson M. J., Guest J. R. 1999; Two operons that encode FNR-like proteins in Lactococcus lactis. Mol Microbiol 31:1523–1535 [CrossRef]
    [Google Scholar]
  15. Gravesen A., Josephsen J., Vogensen F. K., von Wright A. 1995; Characterization of the replicon from the lactococcal theta-replicating plasmid pJW563. Plasmid 34:105–118 [CrossRef]
    [Google Scholar]
  16. Holo H., Nes I. F. 1989; High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123
    [Google Scholar]
  17. Kearney K., Fitzgerald G. F., Seegers J. F. 2000; Identification and characterization of an active plasmid partition mechanism for the novel Lactococcus lactis plasmid pCI2000. J Bacteriol 182:30–37 [CrossRef]
    [Google Scholar]
  18. Kempler G. M., McKay L. L. 1979; Characterization of plasmid deoxyribonucleic acid in Streptococcus lactis subsp. diacetylactis : evidence for plasmid-linked citrate utilization. Appl Environ Microbiol 37:316–323
    [Google Scholar]
  19. Kok J. 1990; Genetics of the proteolytic system of lactic acid bacteria. FEMS Microbiol Rev 87:15–42 [CrossRef]
    [Google Scholar]
  20. Lanka E., Wilkins B. M. 1995; DNA processing reactions in bacterial conjugation. Annu Rev Biochem 64:141–169 [CrossRef]
    [Google Scholar]
  21. Lazazzera B. A., Kurtser I. G., McQuade R. S., Grossman A. D. 1999; An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J Bacteriol 181:5193–5200
    [Google Scholar]
  22. Leelawatcharamanas V., Chia L. G., Charoenchai P., Kunajakr N., Liu C. Q., Dunn N. W. 1997; Plasmid-encoded copper resistance in Lactococcus lactis. Biotechnol Lett 19:639–643 [CrossRef]
    [Google Scholar]
  23. Leonard B. A., Podbielski A., Hedberg P. J., Dunny G. M. 1996; Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. Proc Natl Acad Sci U S A 93:260–264 [CrossRef]
    [Google Scholar]
  24. Lin C., Bolsen K. K., Brent B. E., Hart R. A., Dickerson J. T., Feyerherm A. M., Aimutis W. R. 1992; Ephiphytic microflora on alfalta and whole-plant corn. J Dairy Sci 75:2484–2493 [CrossRef]
    [Google Scholar]
  25. Liu C. Q., Khunajakr N., Chia L. G., Deng Y. M., Charoenchai P., Dunn N. W. 1997; Genetic analysis of regions involved in replication and cadmium resistance of the plasmid pND302 from Lactococcus lactis. Plasmid 38:79–90 [CrossRef]
    [Google Scholar]
  26. Liu C. Q., Charoechai P., Khunajakr N., Deng Y. M., Widodo, Dunn N. W. 2002; Genetic and transcriptional analysis of a novel plasmid-encoded copper resistance operon from Lactococcus lactis. Gene 297:241–247 [CrossRef]
    [Google Scholar]
  27. Lucey M., Daly C., Fitzgerald G. 1993; Analysis of a region from the bacteriophage resistance plasmid pCI528 involved in its conjugative mobilization between Lactococcus strains. J Bacteriol 175:6002–6009
    [Google Scholar]
  28. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev 62:725–774
    [Google Scholar]
  29. Mundt J. O., Hammer J. L. 1968; Lactobacilli on plants. Appl Microbiol 16:1326–1330
    [Google Scholar]
  30. Mundt J. O., Beattie W. G., Wieland F. R. 1969; Pediococci residing on plants. J Bacteriol 98:938–942
    [Google Scholar]
  31. Nicoloff H., Bringel F. 2003; IS Lpl1 is a functional IS 30 -related insertion element in Lactobacillus plantarum that is also found in other lactic acid bacteria. Appl Environ Microbiol 69:6032–6040 [CrossRef]
    [Google Scholar]
  32. Nomura M., Kobayashi M., Narita T., Kimoto-Nira H., Okamoto T. 2006; Phenotypic and molecular characterization of Lactococcus lactis from milk and plants. J Appl Microbiol 101:396–405 [CrossRef]
    [Google Scholar]
  33. O'Sullivan D., Ross R. P., Twomey D. P., Fitzgerald G. F., Hill C., Coffey A. 2001; Naturally occurring lactococcal plasmid pAH90 links bacteriophage resistance and mobility functions to a food-grade selectable marker. Appl Environ Microbiol 67:929–937 [CrossRef]
    [Google Scholar]
  34. O'Sullivan D. J., Klaenhammer T. R. 1993; Rapid mini-prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl Environ Microbiol 59:2730–2733
    [Google Scholar]
  35. Perreten V., Schwarz F., Cresta L., Boeglin M., Dasen G., Teuber M. 1997; Antibiotic resistance spread in food. Nature 389:801–802
    [Google Scholar]
  36. Perreten V., Schwarz F. V., Teuber M., Levy S. B. 2001; Mdt(A), a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactis and Escherichia coli. Antimicrob Agents Chemother 45:1109–1114 [CrossRef]
    [Google Scholar]
  37. Pratt E. A., Fung L. W., Flowers J. A., Ho C. 1979; Membrane-bound d-lactate dehydrogenase from Escherichia coli : purification and properties. Biochemistry 18:312–316 [CrossRef]
    [Google Scholar]
  38. Putman M., Konings W. N., van Veen H. W. 2000; Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693 [CrossRef]
    [Google Scholar]
  39. Putman M., Degener J. E., Konings W. N., van Veen H. W. 2001; The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. Microbiology 147:2873–2880
    [Google Scholar]
  40. Rijnen L., Courtin P., Gripon J.-C., Yvon M. 2000; Expression of a heterologous glutamate dehydrogenase gene in Lactococcus lactis highly improves the conversion of amino acids to aroma compounds. Appl Environ Microbiol 66:1354–1359 [CrossRef]
    [Google Scholar]
  41. Salama M. S., Musafija-Jeknic T., Sandine W. E., Giovannoni S. J. 1995; An ecological study of lactic acid bacteria: isolation of new strains of Lactococcus including Lactococcus lactis subspecies cremoris. J Dairy Sci 78:1004–1017 [CrossRef]
    [Google Scholar]
  42. Sambrook J., Russel D. W., Sambrook J. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Seegers J. F., Bron S., Franke C. M., Venema G., Kiewiet R. 1994; The majority of lactococcal plasmids carry a highly related replicon. Microbiology 140:1291–1300 [CrossRef]
    [Google Scholar]
  44. Siezen R. J., Renckens B., Peters S., Kleerebezem M., van Swam I., van Kranenburg R., de Vos W. M. 2005; Complete sequences of four plasmids of Lactococcus lactis subsp. cremoris SK11 reveal extensive adaptation to the dairy environment. Appl Environ Microbiol 71:8371–8382 [CrossRef]
    [Google Scholar]
  45. Simpson A. E., Skurray R. A., Firth N. 2003; A single gene on the staphylococcal multiresistance plasmid pSK1 encodes a novel partitioning system. J Bacteriol 185:2143–2152 [CrossRef]
    [Google Scholar]
  46. Steele J. L., McKay L. L. 1989; Conjugal transfer of genetic material in lactococci: a review. J Dairy Sci 72:3388–3397 [CrossRef]
    [Google Scholar]
  47. Tanous C., Kieronczyk A., Helinck S., Chambellon E., Yvon M. 2002; Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains. Antonie van Leeuwenhoek 82:271–278 [CrossRef]
    [Google Scholar]
  48. Tanous C., Chambellon E., Sepulchre A.-M., Yvon M. 2005; The gene encoding the glutamate dehydrogenase in Lactococcus lactis is part of a remnant Tn 3 transposon carried by a large plasmid. J Bacteriol 187:5019–5022 [CrossRef]
    [Google Scholar]
  49. Tanous C., Chambellon E., Delespaul G., Yvon M. 2006; Glutamate dehydrogenase activity can be naturally transmitted to Lactococcus lactis strains to stimulate the amino acid conversion to aroma compounds. Appl Environ Microbiol 72:1402–1409 [CrossRef]
    [Google Scholar]
  50. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813
    [Google Scholar]
  51. Teuber M. 1995 The Genus Lactococcus London: Blackie Academic and Professional;
    [Google Scholar]
  52. Tynkkynen S., Buist G., Kunji E., Kok J., Poolman B., Venema G., Haandrikman A. 1993; Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J Bacteriol 175:7523–7532
    [Google Scholar]
  53. Utterback T. R., McDonald L. A., Fuldner R. A. 1995; A reliable, efficient protocol for 96-well plasmid DNA miniprep with rapid DNA quantification for high-throughput automated DNA sequencing. Genome Sequencing Technology 1:1–8 [CrossRef]
    [Google Scholar]
  54. van Kranenburg R., de Vos W. M. 1998; Characterization of multiple regions involved in replication and mobilization of plasmid pNZ4000 coding for exopolysaccharide production in Lactococcus lactis. J Bacteriol 180:5285–5290
    [Google Scholar]
  55. van Veen H. W., Putman M., Margolles A., Sakamoto K., Konings W. N. 1999; Structure–function analysis of multidrug transporters in Lactococcus lactis. Biochim Biophys Acta 1461201–206 [CrossRef]
    [Google Scholar]
  56. Wang A., Macrina F. L. 1995; Streptococcal plasmid pIP501 has a functional oriT site. J Bacteriol 177:4199–4206
    [Google Scholar]
  57. Yu W., Gillies K., Kondo J. K., Broadbent J. R., McKay L. L. 1996; Loss of plasmid-mediated oligopeptide transport system in lactococci: another reason for slow milk coagulation. Plasmid 35:145–155 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.2006/002246-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002246-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error