1887

Abstract

The GOX1857 gene, which encodes a putative membrane-bound pyrroloquinoline quinone (PQQ)-dependent dehydrogenase in ATCC 621H, was characterized. GOX1857 was disrupted and the oxidizing potential of the resulting mutant strain was compared to that of the wild-type. In contrast to the wild-type, the mutant was unable to grow with -inositol as the sole energy source and did not show any -inositol dehydrogenase activity , indicating that GOX1857 encodes an inositol dehydrogenase. The association of inositol dehydrogenase with the membrane and the requirement for the cofactor PQQ were confirmed. Inositol dehydrogenase exhibited optimal activity at pH 8.75. As indicated by cultivation on different substrates, inositol dehydrogenase was repressed by -glucose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002196-0
2007-02-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/499.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002196-0&mimeType=html&fmt=ahah

References

  1. Adachi O., Fujii Y., Ghaly M. F., Toyama H., Shinagawa E., Matsushita K.. 2001; Membrane-bound quinoprotein d-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses. Biosci Biotechnol Biochem65:2755–2762[CrossRef]
    [Google Scholar]
  2. Ameyama M., Shinagawa E., Matsushita K., Adachi O.. 1981; d-Glucose dehydrogenase of Gluconobacter suboxydans : solubilization, purification and characterization. Agric Biol Chem45:851–861[CrossRef]
    [Google Scholar]
  3. Ausubel F. A., Brent R., Kingston R. E., Moore D. D. J. G., Seidman J. G., Smith J. A., Struhl K.. 2002; Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  4. Berman T., Magasanik B.. 1966; The pathway of myo -inositol degradation in Aerobacter aerogenes - dehydrogenation and dehydration. J Biol Chem241:800–806
    [Google Scholar]
  5. Boyer H. W., Roulland-Dussoix D.. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol41:459–472[CrossRef]
    [Google Scholar]
  6. Bremus C., Herrmann U., Bringer-Meyer S., Sahm H.. 2006; The use of microorganisms in l-ascorbic acid production. J Biotechnol124:196–205[CrossRef]
    [Google Scholar]
  7. Cozier G. E., Anthony C.. 1995; Structure of the quinoprotein glucose dehydrogenase of Escherichia coli modelled on that of methanol dehydrogenase from Methylobacterium extorquens . J Biochem312:679–685
    [Google Scholar]
  8. Cozier G. E., Salleh R. A., Anthony C.. 1999; Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine. J Biochem340:639–647[CrossRef]
    [Google Scholar]
  9. Criddle W. J., Fry J. C., Keaney M. M.. 1974; myo -Inositol dehydrogenase(s) from Acetomonas oxydans , optimization of conditions for solubilization of membrane-bound enzyme. Biochem J137:449–452
    [Google Scholar]
  10. Criddle W. J., Fry J. C., Keaney M. M., Lucas C. M., Tovey J. A.. 1977; myo -Inositol dehydrogenase(s) from Acetomonas oxydans . Mol Cell Biochem16:3–6[CrossRef]
    [Google Scholar]
  11. Figurski D. H., Helinski D. R.. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A76:1648–1652[CrossRef]
    [Google Scholar]
  12. Fujita Y., Shindo K., Miwa Y., Yoshida K.. 1991; Bacillus subtilis inositol dehydrogenase-encoding gene ( idh ): sequence and expression in Escherichia coli . Gene108:121–125[CrossRef]
    [Google Scholar]
  13. Galbraith M. P., Feng S. F., Borneman J., Triplett E. W., Rossbach S., de Bruijn F. J.. 1998; A functional myo -inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti . Microbiology144:2915–2924[CrossRef]
    [Google Scholar]
  14. Gillis M., de Ley J.. 1980; Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter . Int J Syst Bacteriol30:7–27[CrossRef]
    [Google Scholar]
  15. Goodwin P. M., Anthony C.. 1998; The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol40:1–80
    [Google Scholar]
  16. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580[CrossRef]
    [Google Scholar]
  17. Hölscher T., Görisch H.. 2006; Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J Bacteriol188:7668–7676[CrossRef]
    [Google Scholar]
  18. Katzen F., Becker A., Ielmini M. V., Oddo C. G., Ielpi L.. 1999; New mobilizable vectors suitable for gene replacement in gram-negative bacteria and their use in mapping of the 3′ end of the Xanthomonas campestris pv. campestris gum operon. Appl Environ Microbiol65:278–282
    [Google Scholar]
  19. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Peterson K. M., Roop R. M. II. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176[CrossRef]
    [Google Scholar]
  20. Matsushita K., Toyama H., Adachi O.. 1994; Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol36:247–301
    [Google Scholar]
  21. Matsushita K., Fujii Y., Ano Y., Toyama H., Shinjoh M., Tomiyama N., Miyazaki T., Sugisawa T., Hoshino T., Adachi O.. 2003; 5-Keto-d-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol69:1959–1966[CrossRef]
    [Google Scholar]
  22. Mutzel A., Görisch H.. 1991; Quinoprotein ethanol dehydrogenase: preparation of the apo-form and reconstitution with pyrroloquinoline quinone and Ca2+ or Sr2+ ions. Agric Biol Chem55:1721–1726[CrossRef]
    [Google Scholar]
  23. Prust C., Hoffmeister M., Liesegang H., Wiezer A., Fricke W. F., Ehrenreich A., Gottschalk G., Deppenmeier U.. 2005; Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans . Nat Biotechnol23:195–200[CrossRef]
    [Google Scholar]
  24. Ramaley R., Fujita Y., Freese E.. 1979; Purification and properties of Bacillus subtilis inositol dehydrogenase. J Biol Chem254:7684–7690
    [Google Scholar]
  25. Rapin A., Haenni A. L., Posternak T.. 1967; Recherches sur la biochimie des cyclitols. X. Sur les cyclitol-déshydrogénases d' Acetobacter suboxydans I. Helv Chim Acta50:1801–1810[CrossRef]
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Toyama H., Mathews F. S., Adachi O., Matsushita K.. 2004; Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology. Arch Biochem Biophys428:10–21[CrossRef]
    [Google Scholar]
  28. Vangnai A. S., Toyama H., De-eknamkul W., Yoshihara N., Adachi O., Matsushita K.. 2004; Quinate oxidation in Gluconobacter oxydans IFO3244: purification and characterization of quinoprotein quinate dehydrogenase. FEMS Microbiol Lett241:157–162[CrossRef]
    [Google Scholar]
  29. Walker J. B.. 1995; Enzymatic synthesis of aminocyclitol moieties of aminoglycoside antibiotics from inositol by Streptomyces spp. Detection of glutamine-aminocyclitol aminotransferase and diaminocyclitol aminotransferase activities in a spectinomycin producer. J Bacteriol177:818–822
    [Google Scholar]
  30. Yamada M., Sumi K., Matsushita K., Adachi O., Yamada Y.. 1993; Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J Biol Chem268:12812–12817
    [Google Scholar]
  31. Yamakoshi M., Takahashi M., Kouzuma T., Imamura S., Tsuboi I., Kawazu S., Yamagata F., Tominaga M., Noritake M.. 2003; Determination of urinary myo -inositol concentration by an improved enzymatic cycling method using myo -inositol dehydrogenase from Flavobacterium sp. Clin Chim Acta328:163–171[CrossRef]
    [Google Scholar]
  32. Yoshida K., Yamaguchi M., Morinaga T., Ikeuchi M., Kinehara M., Ashida H.. 2006; Genetic modification of Bacillus subtilis for production of d- chiro -inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome. Appl Environ Microbiol72:1310–1315[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002196-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002196-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error