1887

Abstract

An homologue () and three -butyrolactone receptor gene homologues (, and ) are coded on the giant linear plasmid pSLA2-L in 7434AN4, a producer of two polyketide antibiotics, lankacidin and lankamycin. Construction of gene disruptants and their phenotypic study revealed that and make a -butyrolactone receptor system in this strain. Addition of a -butyrolactone fraction to an -deficient mutant restored the production of lankacidin and lankamycin, indicating that the SrrX protein is not necessary for this event. In addition to a positive effect on antibiotic production, showed a negative effect on morphological differentiation. The receptor gene reversed both effects of , while the second receptor gene homologue had only a positive function in spore formation. Furthermore, disruption of the third homologue greatly increased the production of lankacidin and lankamycin. Electron microscopic analysis showed that aerial mycelium formation stopped at a different stage in the and mutants. Overall, these results indicated that , , and constitute a complex regulatory system for antibiotic production and morphological differentiation in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002170-0
2007-06-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1817.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002170-0&mimeType=html&fmt=ahah

References

  1. Ando, N., Matsumori, N., Sakuda, S., Beppu, T. & Horinouchi, S. ( 1997; ). Involvement of AfsA in A-factor biosynthesis as a key enzyme. J Antibiot (Tokyo) 50, 847–852.[CrossRef]
    [Google Scholar]
  2. Arakawa, K., Sugino, F., Kodama, K., Ishii, T. & Kinashi, H. ( 2005; ). Cyclization mechanism for the synthesis of macrocyclic antibiotic lankacidin in Streptomyces rochei. Chem Biol 12, 249–256.[CrossRef]
    [Google Scholar]
  3. Arakawa, K., Kodama, K., Tatsuno, S., Ide, S. & Kinashi, H. ( 2006; ). Analysis of the loading and hydroxylation steps in lankamycin biosynthesis in Streptomyces rochei. Antimicrob Agents Chemother 50, 1946–1952.[CrossRef]
    [Google Scholar]
  4. Barany, F. ( 1985; ). Single-stranded hexameric linkers: a system for in-phase insertion mutagenesis and protein engineering. Gene 37, 111–123.[CrossRef]
    [Google Scholar]
  5. Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H. & other authors ( 2002; ). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.[CrossRef]
    [Google Scholar]
  6. Bentley, S. D., Brown, S., Murphy, L. D., Harris, D. E., Quail, M. A., Parkhill, J., Barrell, B. G., McCormick, J. R., Santamaria, R. I. & other authors ( 2004; ). SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol 51, 1615–1628.[CrossRef]
    [Google Scholar]
  7. Beyer, S., Distler, J. & Piepersberg, W. ( 1996; ). The str gene cluster for the biosynthesis of 5′-hydroxystreptomycin in Streptomyces glaucescens GLA.0 (ETH 22794): new operons and evidence for pathway-specific regulation by StrR. Mol Gen Genet 250, 775–784.
    [Google Scholar]
  8. Bibb, M. J. ( 2005; ). Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8, 208–215.[CrossRef]
    [Google Scholar]
  9. Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Rao, R. N. & Schoner, B. E. ( 1992; ). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43–49.[CrossRef]
    [Google Scholar]
  10. Chater, K. F. & Bruton, C. J. ( 1985; ). Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO J 4, 1893–1897.
    [Google Scholar]
  11. Engel, P., Scharfenstein, L. L., Dyer, J. M. & Cary, J. W. ( 2001; ). Disruption of a gene encoding a putative gamma-butyrolactone-binding protein in Streptomyces tendae affects nikkomycin production. Appl Microbiol Biotechnol 56, 414–419.[CrossRef]
    [Google Scholar]
  12. Folcher, M., Gaillard, H., Nguyen, L. T., Nguyen, K. T., Lacroix, P., Bamas-Jacques, N., Rinkel, M. & Thompson, C. J. ( 2001; ). Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276, 44297–44306.[CrossRef]
    [Google Scholar]
  13. Gravius, B., Glocker, D., Pigac, J., Pandza, K., Hranueli, D. & Cullum, J. ( 1994; ). The 387 kb linear plasmid pPZG101 of Streptomyces rimosus and its interactions with the chromosome. Microbiology 140, 2271–2277.[CrossRef]
    [Google Scholar]
  14. Hara, O. & Beppu, T. ( 1982; ). Mutants blocked in streptomycin production in Streptomyces griseus – the role of A-factor. J Antibiot (Tokyo) 35, 349–358.[CrossRef]
    [Google Scholar]
  15. Horinouchi, S. ( 2002; ). A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front Biosci 7, d2045d–2057.[CrossRef]
    [Google Scholar]
  16. Horinouchi, S., Kumada, Y. & Beppu, T. ( 1984; ). Unstable genetic determinant of A-factor biosynthesis in streptomycin-producing organisms: cloning and characterization. J Bacteriol 158, 481–487.
    [Google Scholar]
  17. Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., Sakaki, Y., Hattori, M. & Omura, S. ( 2003; ). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21, 526–531.[CrossRef]
    [Google Scholar]
  18. Ishikawa, J., Niino, Y. & Hotta, K. ( 1996; ). Construction of pRES18 and pRES19, Streptomyces-Escherichia coli shuttle vectors carrying multiple cloning sites. FEMS Microbiol Lett 145, 113–116.[CrossRef]
    [Google Scholar]
  19. Kato, J. Y., Suzuki, A., Yamazaki, H., Ohnishi, Y. & Horinouchi, S. ( 2002; ). Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J Bacteriol 184, 6016–6025.[CrossRef]
    [Google Scholar]
  20. Kato, J. Y., Miyahisa, I., Mashiko, M., Ohnishi, Y. & Horinouchi, S. ( 2004; ). A single target is sufficient to account for the biological effects of the A-factor receptor protein of Streptomyces griseus. J Bacteriol 186, 2206–2211.[CrossRef]
    [Google Scholar]
  21. Kawachi, R., Akashi, T., Kamitani, Y., Sy, A., Wangchaisoonthorn, U., Nihira, T. & Yamada, Y. ( 2000; ). Identification of an AfsA homologue (BarX) from Streptomyces virginiae as a pleiotropic regulator controlling autoregulator biosynthesis, virginiamycin biosynthesis and virginiamycin M1 resistance. Mol Microbiol 36, 302–313.[CrossRef]
    [Google Scholar]
  22. Khokhlov, A. S., Anisova, L. N., Tovarova, I. I., Kleiner, E. M., Kovalenko, I. V., Krasilnikova, O. I., Kornitskaya, E. Y. & Pliner, S. A. ( 1973; ). Effect of A-factor on the growth of asporogenous mutants of Streptomyces griseus, not producing this factor. Z Allg Mikrobiol 13, 647–655.[CrossRef]
    [Google Scholar]
  23. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich, UK: John Innes Foundation.
  24. Kinashi, H., Shimaji, M. & Sakai, A. ( 1987; ). Giant linear plasmids in Streptomyces which code for antibiotic biosynthesis genes. Nature 328, 454–456.[CrossRef]
    [Google Scholar]
  25. Kinashi, H., Mori, E., Hatani, A. & Nimi, O. ( 1994; ). Isolation and characterization of large linear plasmids from lankacidin-producing Streptomyces species. J Antibiot (Tokyo) 47, 1447–1455.[CrossRef]
    [Google Scholar]
  26. Kinashi, H., Fujii, S., Hatani, A., Kurokawa, T. & Shinkawa, H. ( 1998; ). Physical mapping of the linear plasmid pSLA2-L and localization of the eryAI and actI homologs. Biosci Biotechnol Biochem 62, 1892–1897.[CrossRef]
    [Google Scholar]
  27. Kitani, S., Yamada, Y. & Nihira, T. ( 2001; ). Gene replacement analysis of the butyrolactone autoregulator receptor (FarA) reveals that FarA acts as a novel regulator in secondary metabolism of Streptomyces lavendulae FRI-5. J Bacteriol 183, 4357–4363.[CrossRef]
    [Google Scholar]
  28. Lezhava, A., Kameoka, D., Sugino, H., Goshi, K., Shinkawa, H., Nimi, O., Horinouchi, S., Beppu, T. & Kinashi, H. ( 1997; ). Chromosomal deletions in Streptomyces griseus that remove the afsA locus. Mol Gen Genet 253, 478–483.[CrossRef]
    [Google Scholar]
  29. Matsuno, K., Yamada, Y., Lee, C. K. & Nihira, T. ( 2004; ). Identification by gene deletion analysis of barB as a negative regulator controlling an early process of virginiamycin biosynthesis in Streptomyces virginiae. Arch Microbiol 181, 52–59.[CrossRef]
    [Google Scholar]
  30. Miyake, K., Kuzuyama, T., Horinouchi, S. & Beppu, T. ( 1990; ). The A-factor-binding protein of Streptomyces griseus negatively controls streptomycin production and sporulation. J Bacteriol 172, 3003–3008.
    [Google Scholar]
  31. Mochizuki, S., Hiratsu, K., Suwa, M., Ishii, T., Sugino, F., Yamada, K. & Kinashi, H. ( 2003; ). The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol Microbiol 48, 1501–1510.[CrossRef]
    [Google Scholar]
  32. Nakano, H., Takehara, E., Nihira, T. & Yamada, Y. ( 1998; ). Gene replacement analysis of the Streptomyces virginiae barA gene encoding the butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis. J Bacteriol 180, 3317–3322.
    [Google Scholar]
  33. O'Connor, T. J., Kanellis, P. & Nodwell, J. R. ( 2002; ). The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol Microbiol 45, 45–57.[CrossRef]
    [Google Scholar]
  34. Ohnishi, Y., Kameyama, S., Onaka, H. & Horinouchi, S. ( 1999; ). The A-factor regulatory cascade leading to streptomycin production in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 34, 102–111.[CrossRef]
    [Google Scholar]
  35. Ohnishi, Y., Yamazaki, H., Kato, J., Tomono, A. & Horinouchi, S. ( 2005; ). AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem 69, 431–439.[CrossRef]
    [Google Scholar]
  36. Onaka, H., Ando, N., Nihara, T., Yamada, Y., Beppu, T. & Horinouchi, S. ( 1995; ). Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J Bacteriol 177, 6083–6092.
    [Google Scholar]
  37. Onaka, H., Nakagawa, T. & Horinouchi, S. ( 1998; ). Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Mol Microbiol 28, 743–753.
    [Google Scholar]
  38. Pandza, S., Biukovic, G., Paravic, A., Dadbin, A., Cullum, J. & Hranueli, D. ( 1998; ). Recombination between the linear plasmid pPZG101 and the linear chromosome of Streptomyces rimosus can lead to exchange of ends. Mol Microbiol 28, 1165–1176.[CrossRef]
    [Google Scholar]
  39. Ramos, J. L., Martinez-Bueno, M., Molina-Henares, A. J., Teran, W., Watanabe, K., Zhang, X., Gallegos, M. T., Brennan, R. & Tobes, R. ( 2005; ). The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69, 326–356.[CrossRef]
    [Google Scholar]
  40. Redenbach, M., Ikeda, K., Yamasaki, M. & Kinashi, H. ( 1998; ). Cloning and physical mapping of the EcoRI fragments of the giant linear plasmid SCP1. J Bacteriol 180, 2796–2799.
    [Google Scholar]
  41. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  42. Stratigopoulos, G. & Cundliffe, E. ( 2002; ). Expression analysis of the tylosin-biosynthetic gene cluster: pivotal regulatory role of the tylQ product. Chem Biol 9, 71–78.[CrossRef]
    [Google Scholar]
  43. Stratigopoulos, G., Gandecha, A. R. & Cundliffe, E. ( 2002; ). Regulation of tylosin production and morphological differentiation in Streptomyces fradiae by TylP, a deduced γ-butyrolactone receptor. Mol Microbiol 45, 735–744.[CrossRef]
    [Google Scholar]
  44. Stratigopoulos, G., Bate, N. & Cundliffe, E. ( 2004; ). Positive control of tylosin biosynthesis: pivotal role of TylR. Mol Microbiol 54, 1326–1334.[CrossRef]
    [Google Scholar]
  45. Sugiyama, M., Onaka, H., Nakagawa, T. & Horinouchi, S. ( 1998; ). Site-directed mutagenesis of the A-factor receptor protein: Val-41 important for DNA-binding and Trp-119 important for ligand-binding. Gene 222, 133–144.[CrossRef]
    [Google Scholar]
  46. Suwa, M., Sugino, H., Sasaoka, A., Mori, E., Fujii, S., Shinkawa, H., Nimi, O. & Kinashi, H. ( 2000; ). Identification of two polyketide synthase gene clusters on the linear plasmid pSLA2-L in Streptomyces rochei. Gene 246, 123–131.[CrossRef]
    [Google Scholar]
  47. Takano, E. ( 2006; ). γ-Butyrolactones: Streptomyces signaling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9, 287–294.[CrossRef]
    [Google Scholar]
  48. Takano, E., Chakaraburtty, R., Nihira, T., Yamada, Y. & Bibb, M. J. ( 2001; ). A complex role for the γ-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 41, 1015–1028.
    [Google Scholar]
  49. Takano, E., Kinoshita, H., Mersinias, V., Bucca, G., Hotchkiss, G., Nihira, T., Smith, C. P., Bibb, M., Wohlleben, W. & Chater, K. ( 2005; ). A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol 56, 465–479.[CrossRef]
    [Google Scholar]
  50. Wietzorrek, A. & Bibb, M. ( 1997; ). A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25, 1181–1184.[CrossRef]
    [Google Scholar]
  51. Yamazaki, H., Ohnishi, Y. & Horinouchi, S. ( 2000; ). An A-factor-dependent extracytoplasmic function sigma factor (sigma(AdsA)) that is essential for morphological development in Streptomyces griseus. J Bacteriol 182, 4596–4605.[CrossRef]
    [Google Scholar]
  52. Zhang, H., Shinkawa, H., Ishikawa, J., Kinashi, H. & Nimi, O. ( 1997; ). Improvement of transformation system in Streptomyces using a modified regeneration medium. J Ferment Bioeng 83, 217–221.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002170-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002170-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1817 - 1827

[ PDF] (332 kb) Bacterial strains and plasmids used in this study. Disruption of (orf85). Disruption of (orf82). Disruption of (orf79). Disruption of (orf74).



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error