1887

Abstract

, the common inhabitant of the mammalian intestine, exhibits considerable intraspecies genomic variation, which has been suggested to reflect adaptation to different ecological niches. Also, regulatory trade-offs, e.g. between catabolic versatility and stress protection, are thought to result in significant physiological differences between strains. For these reasons, the relevance of experimental observations made for ‘domesticated’ strains with regard to the behaviour of this species in its natural environments is often questioned and doubts are frequently raised on the status of as a defined species. The variability of important (eco-)physiological functions, such as carbon substrate uptake and breakdown capabilities, as well as stress defence mechanisms, in the genomes of commensal and pathogenic strains were therefore investigated. Furthermore, (eco-)physiological properties of environmental strains were compared to standard laboratory strain K-12 MG1655. Catabolic, stress protection, and carbon- and energy source transport operons showed a very low intraspecies variability in 57 commensal and pathogenic . Environmental isolates adapted to glucose-limited growth in a similar way as MG1655, namely by increasing their catabolic flexibility and by inducing high-affinity substrate uptake systems. The results obtained indicate that significant (eco-)physiological properties are highly conserved in the natural population of . This questions the proposed dominant role of horizontal gene transfer for niche adaptation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002006-0
2007-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2052.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002006-0&mimeType=html&fmt=ahah

References

  1. Ames, G. F., Prody, C. & Kustu, S. ( 1984; ). Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J Bacteriol 160, 1181–1183.
    [Google Scholar]
  2. Anjum, M. F., Lucchini, S., Thompson, A., Hinton, J. C. & Woodward, M. J. ( 2003; ). Comparative genomic indexing reveals the phylogenomics of Escherichia coli pathogens. Infect Immun 71, 4674–4683.[CrossRef]
    [Google Scholar]
  3. Bergthorsson, U. & Ochman, H. ( 1998; ). Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol Biol Evol 15, 6–16.[CrossRef]
    [Google Scholar]
  4. Berlyn, M. K. ( 1998; ). Linkage map of Escherichia coli K-12, edition 10: the traditional map. Microbiol Mol Biol Rev 62, 814–984.
    [Google Scholar]
  5. Bettelheim, K. A. ( 1992; ). The genus Escherichia. In The Prokaryotes, pp. 2696–2736. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer Verlag.
  6. Beutin, L., Montenegro, M. A., Orskov, I., Orskov, F., Prada, J., Zimmermann, S. & Stephan, R. ( 1989; ). Close association of verotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli. J Clin Microbiol 27, 2559–2564.
    [Google Scholar]
  7. Blattner, F. R., Plunkett, G., III, Bloch, C., Perna, N., Burland, V., Riley, M., Collado-Vides, J., Glasner, J., Rode, C. & other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462.[CrossRef]
    [Google Scholar]
  8. Blum, G., Ott, M., Lischewski, A., Ritter, A., Imrich, H., Tschape, H. & Hacker, J. ( 1994; ). Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62, 606–614.
    [Google Scholar]
  9. Booth, I. R., Cash, P. & O'Byrne, C. ( 2002; ). Sensing and adapting to acid stress. Antonie Van Leeuwenhoek 81, 33–42.[CrossRef]
    [Google Scholar]
  10. Charbonnier, Y., Gettler, B., Patrice François, P., Bento, M., Renzoni, A., Vaudaux, P., Schlegel, W. & Schrenzel, J. ( 2005; ). A generic approach for the design of whole-genome oligoarrays, validated for genomotyping, deletion mapping and gene expression analysis on Staphylococcus aureus. BMC Genomics 6, 95 [CrossRef]
    [Google Scholar]
  11. Chen, G., Patten, C. L. & Schellhorn, H. E. ( 2004; ). Positive selection for loss of RpoS function in Escherichia coli. Mutat Res 554, 193–203.[CrossRef]
    [Google Scholar]
  12. Clermont, O., Bonacorsi, S. & Bingen, E. ( 2000; ). Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66, 4555–4558.[CrossRef]
    [Google Scholar]
  13. Cooper, V. S. & Lenski, R. E. ( 2000; ). The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407, 736–739.[CrossRef]
    [Google Scholar]
  14. Dagan, T. & William, M. ( 2006; ). The tree of one percent. Genome Biol 7, 118 [CrossRef]
    [Google Scholar]
  15. Dobrindt, U., Agerer, F., Michaelis, K., Janka, A., Buchrieser, C., Samuelson, M., Svanborg, C., Gottschalk, G., Karch, H. & Hacker, J. ( 2003; ). Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 185, 1831–1840.[CrossRef]
    [Google Scholar]
  16. Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. ( 2004; ). Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2, 414–424.[CrossRef]
    [Google Scholar]
  17. Doolittle, W. F. ( 1999; ). Phylogenetic classification and the universal tree. Science 284, 2124–2129.[CrossRef]
    [Google Scholar]
  18. Durso, L. M., Smith, D. & Hutkins, R. W. ( 2004; ). Measurements of fitness and competition in commensal Escherichia coli and E. coli O157 : H7 strains. Appl Environ Microbiol 70, 6466–6472.[CrossRef]
    [Google Scholar]
  19. Egli, T. ( 1995; ). The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates. Adv Microb Ecol 14, 305–386.
    [Google Scholar]
  20. Eisenstark, A., Calcutt, M. J., Becker-Hapak, M. & Ivanova, A. ( 1996; ). Role of Escherichia coli rpoS and associated genes in defence against oxidative damage. Free Radic Biol Med 21, 975–993.[CrossRef]
    [Google Scholar]
  21. Ferenci, T. ( 2001; ). Hungry bacteria – definition and properties of a nutritional state. Environ Microbiol 3, 605–611.[CrossRef]
    [Google Scholar]
  22. Freter, R., Brickner, H., Fekete, J., Vickerman, M. M. & Carey, K. E. ( 1983a; ). Survival and implantation of Escherichia coli in the intestinal tract. Infect Immun 39, 686–703.
    [Google Scholar]
  23. Freter, R., Brickner, H., Botney, M., Cleven, D. & Aranki, A. ( 1983b; ). Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect Immun 39, 676–685.
    [Google Scholar]
  24. Gordon, D. M., Riley, M. A. & Pinou, T. ( 1998; ). Temporal changes in the frequency of colicinogeny in Escherichia coli from house mice. Microbiology 144, 2233–2240.[CrossRef]
    [Google Scholar]
  25. Hacker, J. & Kaper, J. B. ( 2000; ). Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54, 641–679.[CrossRef]
    [Google Scholar]
  26. Hashimoto, M., Ichimura, T., Mizoguchi, H., Tanaka, K., Fujimitsu, K., Keyamura, K., Ote, T., Yamakawa, T., Yamazaki, Y. & other authors ( 2005; ). Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol 55, 137–149.
    [Google Scholar]
  27. Hengge-Aronis, R. ( 1996; ). Regulation of gene expression during entry into stationary phase. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 1497–1512. Edited by F. C. Neidhardt and others. Washington, DC: ASM Press.
  28. Holt, J. G. ( 1994; ). Bergey's Manual of Determinative Bacteriology. Baltimore, USA: Williams & Wilkins.
  29. Ihssen, J. & Egli, T. ( 2004; ). Specific growth rate and not cell density controls the general stress response in Escherichia coli. Microbiology 150, 1637–1648.[CrossRef]
    [Google Scholar]
  30. Ihssen, J. & Egli, T. ( 2005; ). Global physiological analysis of carbon- and energy-limited growing Escherichia coli confirms a high degree of catabolic flexibility and preparedness for mixed substrate utilization. Environ Microbiol 7, 1568–1581.[CrossRef]
    [Google Scholar]
  31. Ishihama, A. ( 2000; ). Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54, 499–518.[CrossRef]
    [Google Scholar]
  32. Kanehisa, M. & Goto, S. ( 2000; ). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28, 27–30.[CrossRef]
    [Google Scholar]
  33. Keseler, I. M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I. T., Peralta-Gil, M. & Karp, P. D. ( 2005; ). EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33, D334–D337.
    [Google Scholar]
  34. Kim, C. C., Joyce, E. A., Chan, K. & Falkow, S. ( 2002; ). Improved analytical methods for microarray-based genome-composition analysis. Genome Biol 3
    [Google Scholar]
  35. King, T., Ishihama, A., Kori, A. & Ferenci, T. ( 2004; ). A regulatory trade-off as a source of strain variation in the species Escherichia coli. J Bacteriol 186, 5614–5620.[CrossRef]
    [Google Scholar]
  36. Kurland, C. G. ( 2005; ). What tangled web: barriers to rampant horizontal gene transfer. Bioessays 27, 741–747.[CrossRef]
    [Google Scholar]
  37. Lan, R. & Reeves, P. R. ( 2000; ). Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 8, 396–401.[CrossRef]
    [Google Scholar]
  38. Lange, R. & Hengge-Aronis, R. ( 1994; ). The cellular concentration of the σ S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8, 1600–1612.[CrossRef]
    [Google Scholar]
  39. Lawrence, J. G. ( 2001; ). Catalyzing bacterial speciation: correlating lateral transfer with genetic headroom. Syst Biol 50, 479–496.[CrossRef]
    [Google Scholar]
  40. Lawrence, J. G. & Ochman, H. ( 1998; ). Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A 95, 9413–9417.[CrossRef]
    [Google Scholar]
  41. Lin, E. C. C. ( 1996; ). Dissimilatory pathways for sugars, polyols and carboxylates. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 307–342. Edited by F. C. Neidhardt and others. Washington, DC: ASM Press.
  42. Liu, M., Durfee, T., Cabrera, J. E., Zhao, K., Jin, D. J. & Blattner, F. R. ( 2005; ). Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J Biol Chem 280, 15921–15927.[CrossRef]
    [Google Scholar]
  43. Loewen, P. C., Hu, B., Strutinsky, J. & Sparling, R. ( 1998; ). Regulation in the rpoS regulon of Escherichia coli. Can J Microbiol 44, 707–717.[CrossRef]
    [Google Scholar]
  44. Macfarlane, G. T. & Macfarlane, S. ( 1997; ). Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scand J Gastroenterol Suppl 222, 3–9.
    [Google Scholar]
  45. Macfarlane, G. T., Macfarlane, S. & Gibson, G. R. ( 1998; ). Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35, 180–187.[CrossRef]
    [Google Scholar]
  46. Manché, K., Notley-McRobb, L. & Ferenci, T. ( 1999; ). Mutational adaptation of Escherichia coli to glucose limitation involves distinct evolutionary pathways in aerobic and oxygen-limited environments. Genetics 153, 5–12.
    [Google Scholar]
  47. Mason, T. G. & Richardson, G. ( 1981; ). Escherichia coli and the human gut: some ecological considerations. J Appl Bacteriol 51, 1–16.[CrossRef]
    [Google Scholar]
  48. Matin, A. ( 1991; ). The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Mol Microbiol 5, 3–10.[CrossRef]
    [Google Scholar]
  49. Matin, A. C. ( 2004; ). Starvation, bacterial. In Desk Encyclopedia of Microbiology, pp. 951–959. Edited by M. Schaechter. Amsterdam: Elsevier Academic Press.
  50. McFall, E. & Newman, E. B. ( 1996; ). Amino acids as carbon sources. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 307–342. Edited by F. C. Neidhardt and others. Washington, DC: ASM Press.
  51. Mikkola, R. & Kurland, C. G. ( 1992; ). Selection of laboratory wild-type phenotype from natural isolates of Escherichia coli in chemostats. Mol Biol Evol 9, 394–402.
    [Google Scholar]
  52. Miller, R. D. & Hartl, D. L. ( 1986; ). Biotyping confirms a nearly clonal population structure in Escherichia coli. Evolution 40, 1–12.[CrossRef]
    [Google Scholar]
  53. Munro, P. M., Flatau, G. N., Clement, R. L. & Gauthier, M. J. ( 1995; ). Influence of the RpoS (KatF) sigma factor on maintenance of viability and culturability of Escherichia coli and Salmonella typhimurium in seawater. Appl Environ Microbiol 61, 1853–1858.
    [Google Scholar]
  54. Notley-McRobb, L. & Ferenci, T. ( 1999a; ). Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations. Environ Microbiol 1, 33–43.[CrossRef]
    [Google Scholar]
  55. Notley-McRobb, L. & Ferenci, T. ( 1999b; ). The generation of multiple coexisting mal-regulatory mutations through polygenic evolution in glucose-limited populations of Escherichia coli. Environ Microbiol 1, 45–52.[CrossRef]
    [Google Scholar]
  56. Notley-McRobb, L., King, T. & Ferenci, T. ( 2002; ). rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J Bacteriol 184, 806–811.[CrossRef]
    [Google Scholar]
  57. Nowrouzian, F. L., Adlerberth, I. & Wold, A. ( 2006; ). Enhanced persistence in the colonic microbiota of Escherichia coli strains belonging to phylogenetic group B2: role of virulence factors and adherence to colonic cells. Microbes Infect 8, 834–840.[CrossRef]
    [Google Scholar]
  58. Nyström, T. ( 2004; ). Stationary-phase physiology. Annu Rev Microbiol 58, 161–181.[CrossRef]
    [Google Scholar]
  59. Ochman, H., Lawrence, J. G. & Groisman, E. A. ( 2000; ). Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304.[CrossRef]
    [Google Scholar]
  60. Ölschläger, T., Schramm, E. & Braun, V. ( 1984; ). Cloning and expression of the activity and immunity genes of colicins B and M on ColBM plasmids. Mol Gen Genet 196, 482–487.[CrossRef]
    [Google Scholar]
  61. Peekhaus, N. & Conway, T. ( 1998; ). What's for dinner?: Entner-Doudoroff metabolism in Escherichia coli. J Bacteriol 180, 3495–3502.
    [Google Scholar]
  62. Perna, N. T., Plunkett, G., III, Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J. & other authors ( 2001; ). Genome sequence of enterohaemorrhagic Escherichia coli O157 : H7. Nature 409, 529–533.[CrossRef]
    [Google Scholar]
  63. Philippe, H. & Douady, C. J. ( 2003; ). Horizontal gene transfer and phylogenetics. Curr Opin Microbiol 6, 498–505.[CrossRef]
    [Google Scholar]
  64. Reeves, P. R. ( 1992; ). Variation in O-antigens, niche-specific selection and bacterial populations. FEMS Microbiol Lett 79, 509–516.
    [Google Scholar]
  65. Savageau, M. A. ( 1983; ). Escherichia coli habitats, cell types and molecular mechanisms of gene control. Am Nat 122, 732–744.[CrossRef]
    [Google Scholar]
  66. Schwyn, B. & Neilands, J. B. ( 1987; ). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47–56.[CrossRef]
    [Google Scholar]
  67. Selander, R. K., Caugant, D. A. & Whittam, T. S. ( 1996; ). Genetic structure and variation in natural populations of Escherichia coli. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1625–1648. Edited by F. C. Neidhardt and others. Washington, DC: ASM Press.
  68. Senn, H., Lendenmann, U., Snozzi, M., Hamer, G. & Egli, T. ( 1994; ). The growth of Escherichia coli in glucose-limited chemostat cultures: a re-examination of the kinetics. Biochim Biophys Acta 1201, 424–436.[CrossRef]
    [Google Scholar]
  69. Shehata, T. E. & Marr, A. G. ( 1971; ). Effect of nutrient concentration on the growth of Escherichia coli. J Bacteriol 107, 210–216.
    [Google Scholar]
  70. Smith, H. W. & Huggins, M. B. ( 1978; ). The effect of plasmid-determined and other characteristics on the survival of Escherichia coli in the alimentary tract of two human beings. J Gen Microbiol 109, 375–379.[CrossRef]
    [Google Scholar]
  71. Smith, H. W. & Parsell, Z. ( 1975; ). Transmissible substrate-utilizing ability in enterobacteria. J Gen Microbiol 87, 129–140.[CrossRef]
    [Google Scholar]
  72. Soupene, E., van Heeswijk, W. C., Plumbridge, J., Stewart, V., Bertenthal, D., Lee, H., Prasad, G., Paliy, O., Charernnoppakul, P. & Kustu, S. ( 2003; ). Physiological studies of Escherichia coli strain MG1655: growth defects and apparent cross-regulation of gene expression. J Bacteriol 185, 5611–5626.[CrossRef]
    [Google Scholar]
  73. Stoebel, D. M. ( 2004; ). Lack of evidence for horizontal transfer of the lac operon into Escherichia coli. Mol Biol Evol 22, 683–690.[CrossRef]
    [Google Scholar]
  74. Visick, J. E. & Clarke, S. ( 1997; ). RpoS- and OxyR-independent induction of HPI catalase at stationary phase in Escherichia coli and identification of rpoS mutations in common laboratory strains. J Bacteriol 179, 4158–4163.
    [Google Scholar]
  75. Waterman, S. R. & Small, P. L. ( 1996; ). Characterization of the acid resistance phenotype and rpoS alleles of shiga-like toxin-producing Escherichia coli. Infect Immun 64, 2808–2811.
    [Google Scholar]
  76. Welch, R. A., Burland, V., Plunkett, G., III, Redford, P., Roesch, P., Rasko, D., Buckles, E. L., Liou, S. R., Boutin, A. & other authors ( 2002; ). Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99, 17020–17024.[CrossRef]
    [Google Scholar]
  77. Wick, L. M. & Egli, T. ( 2004; ). Molecular components of physiological stress responses in Escherichia coli. Adv Biochem Eng Biotechnol 89, 1–45.
    [Google Scholar]
  78. Wick, L. M., Quadroni, M. & Egli, T. ( 2001; ). Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose-limited growth conditions in continuous culture and vice versa. Environ Microbiol 3, 588–599.[CrossRef]
    [Google Scholar]
  79. Wick, L. M., Weilenmann, H. & Egli, T. ( 2002; ). The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics. Microbiology 148, 2889–2902.
    [Google Scholar]
  80. Wick, L. M., Qi, W., Lacher, D. W. & Whittam, T. S. ( 2005; ). Evolution of genomic content in the stepwise emergence of Escherichia coli O157 : H7. J Bacteriol 187, 1783–1791.[CrossRef]
    [Google Scholar]
  81. Zinser, E. R. & Kolter, R. ( 1999; ). Mutations enhancing amino acid catabolism confer a growth advantage in stationary phase. J Bacteriol 181, 5800–5807.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002006-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002006-0
Loading

Data & Media loading...

labelling protocol with Cy5/Cy3 for genomic DNA [PDF](18 KB).

PDF

raw microarray data of this and other studies [Excel](2.9 MB).

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error