1887

Abstract

tRNA-encoding genes (tDNA) are known hot-spots for the integration of ecto-chromosomal DNA (ECDNA) including genomic islands. However, only a few loci are currently known to be targeted by such insertions in . A PCR-based screening of tDNA integrity was therefore performed on a collection of strains in order to identify tDNA loci that are most frequently intact and those that are preferred ECDNA insertion sites. It was shown that only a subset of tDNAs were hot-spots for ECDNA insertions, and that the majority of loci were never targeted by such insertions. Polycistronic tDNAs, highly transcribed tDNAs or tDNAs encoding tRNAs recognizing frequently used codons were generally not targeted by ECDNA insertions. Most interestingly, strains of different ECOR groups showed different patterns of tDNA loci polymorphism. More subtle differences were also observed between strains of different pathotypes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001958-0
2007-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/826.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001958-0&mimeType=html&fmt=ahah

References

  1. Anton, A. I., Martinez-Murcia, A. J. & Rodriguez-Valera, F. ( 1998; ). Sequence diversity in the 16S-23S intergenic spacer region (ISR) of the rRNA operons in representatives of the Escherichia coli ECOR collection. J Mol Evol 47, 62–72.[CrossRef]
    [Google Scholar]
  2. Ardell, D. H. & Kirsebom, L. A. ( 2005; ). The genomic pattern of tDNA operon expression in E. coli. PLoS Comput Biol 1, e12.[CrossRef]
    [Google Scholar]
  3. Asai, T., Condon, C., Voulgaris, J., Zaporojets, D., Shen, B., Al-Omar, M., Squires, C. & Squires, C. L. ( 1999; ). Construction and initial characterization of Escherichia coli strains with few or no intact chromosomal rRNA operons. J Bacteriol 181, 3803–3809.
    [Google Scholar]
  4. Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D. & other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.[CrossRef]
    [Google Scholar]
  5. Bosl, M. & Kersten, H. ( 1991; ). A novel RNA product of the tyrT operon of Escherichia coli. Nucleic Acids Res 19, 5863–5870.[CrossRef]
    [Google Scholar]
  6. Boyd, E. F. & Hartl, D. L. ( 1998; ). Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J Bacteriol 180, 1159–1165.
    [Google Scholar]
  7. Cali, S., Spoldi, E., Piazzolla, D., Dodd, I. B., Forti, F., Deho, G. & Ghisotti, D. ( 2004; ). Bacteriophage P4 Vis protein is needed for prophage excision. Virology 322, 82–92.[CrossRef]
    [Google Scholar]
  8. Cheetham, B. F. & Katz, M. E. ( 1995; ). A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol 18, 201–208.[CrossRef]
    [Google Scholar]
  9. Chouikha, I., Germon, P., Brée, A., Gilot, P., Moulin-Schouleur, M. & Schouler, C. ( 2006; ). A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. J Bacteriol 188, 977–987.[CrossRef]
    [Google Scholar]
  10. Clermont, O., Bonacorsi, S. & Bingen, E. ( 2000; ). Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66, 4555–4558.[CrossRef]
    [Google Scholar]
  11. Condon, C., Liveris, D., Squires, C., Schwartz, I. & Squires, C. L. ( 1995; ). rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol 177, 4152–4156.
    [Google Scholar]
  12. Dho, M. & Lafont, J. P. ( 1984; ). Adhesive properties and iron uptake ability in Escherichia coli lethal and nonlethal for chicks. Avian Dis 28, 1016–1025.[CrossRef]
    [Google Scholar]
  13. Dobrindt, U. & Hacker, J. ( 2001; ). Regulation of tRNA5Leu-encoding gene leuX that is associated with a pathogenicity island in the uropathogenic Escherichia coli strain 536. Mol Genet Genomics 265, 895–904.[CrossRef]
    [Google Scholar]
  14. Dobrindt, U., Blum-Oehler, G., Hartsch, T., Gottschalk, G., Ron, E. Z., Fünfstück, R. & Hacker, J. ( 2001; ). S-Fimbria-encoding determinant sfa(I) is located on pathogenicity island III(536) of uropathogenic Escherichia coli strain 536. Infect Immun 69, 4248–4256.[CrossRef]
    [Google Scholar]
  15. Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. ( 2004; ). Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2, 414–424.[CrossRef]
    [Google Scholar]
  16. Dozois, C. M. & Curtiss, R., 3rd ( 1999; ). Pathogenic diversity of Escherichia coli and the emergence of ‘exotic’ islands in the gene stream. Vet Res 30, 157–179.
    [Google Scholar]
  17. Escobar-Paramo, P., Clermont, O., Blanc-Potard, A. B., Bui, H., Le Bouguénec, C. & Denamur, E. ( 2004; ). A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol Biol Evol 21, 1085–1094.[CrossRef]
    [Google Scholar]
  18. Fournier, M. J. & Ozeki, H. ( 1985; ). Structure and organization of the transfer ribonucleic acid genes of Escherichia coli K-12. Microbiol Rev 49, 379–397.
    [Google Scholar]
  19. Fouts, D. E. ( 2006; ). Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res 34, 5839–5851.[CrossRef]
    [Google Scholar]
  20. Hacker, J., Hentschel, U. & Dobrindt, U. ( 2003; ). Prokaryotic chromosomes and disease. Science 301, 790–793.[CrossRef]
    [Google Scholar]
  21. Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C. G., Ohtsubo, E., Nakayama, K. & other authors ( 2001; ). Complete genome sequence of enterohemorrhagic Escherichia coli O157 : H7 and genomic comparison with a laboratory strain K-12. DNA Res 8, 11–22.[CrossRef]
    [Google Scholar]
  22. Hochhut, B., Wilde, C., Middendorf, B., Dobrindt, U., Brzuszkiewicz, E., Gottschalk, G., Carniel, E. & Hacker, J. ( 2006; ). Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536. Mol Microbiol 61, 555–595.[CrossRef]
    [Google Scholar]
  23. Hou, Y. M. ( 1999; ). Transfer RNAs and pathogenicity islands. Trends Biochem Sci 24, 295–298.[CrossRef]
    [Google Scholar]
  24. Kaper, J. B., Nataro, J. P. & Mobley, H. L. ( 2004; ). Pathogenic Escherichia coli. Nat Rev Microbiol 2, 123–140.[CrossRef]
    [Google Scholar]
  25. King, T. C., Sirdeskmukh, R. & Schlessinger, D. ( 1986; ). Nucleolytic processing of ribonucleic acid transcripts in procaryotes. Microbiol Rev 50, 428–451.
    [Google Scholar]
  26. Lecointre, G., Rachdi, L., Darlu, P. & Denamur, E. ( 1998; ). Escherichia coli molecular phylogeny using the incongruence length difference test. Mol Biol Evol 15, 1685–1695.[CrossRef]
    [Google Scholar]
  27. Lee, J. S., An, G., Friesen, J. D. & Fill, N. P. ( 1981; ). Location of the tufB promoter of E. coli: cotranscription of tufB with four transfer RNA genes. Cell 25, 251–258.[CrossRef]
    [Google Scholar]
  28. Lesic, B., Bach, S., Ghigo, J. M., Dobrindt, U., Hacker, J. & Carniel, E. ( 2004; ). Excision of the high-pathogenicity island of Yersinia pseudotuberculosis requires the combined actions of its cognate integrase and Hef, a new recombination directionality factor. Mol Microbiol 52, 1337–1348.[CrossRef]
    [Google Scholar]
  29. Li, Z. & Deutscher, M. P. ( 1996; ). Maturation pathways for E. coli tRNA precursors: a random multienzyme process in vivo. Cell 86, 503–512.[CrossRef]
    [Google Scholar]
  30. Li, Z. & Deutscher, M. P. ( 2002; ). RNase E plays an essential role in the maturation of Escherichia coli tRNA precursors. RNA 8, 97–109.[CrossRef]
    [Google Scholar]
  31. Morl, M. & Marchfelder, A. ( 2001; ). The final cut. The importance of tRNA 3′-processing. EMBO Rep 2, 17–20.[CrossRef]
    [Google Scholar]
  32. Ochman, H. & Selander, R. K. ( 1984; ). Standard reference strains of Escherichia coli from natural populations. J Bacteriol 157, 690–693.
    [Google Scholar]
  33. Ou, H. Y., Chen, L. L., Lonnen, J., Chaudhuri, R. R., Thani, A. B., Smith, R., Garton, N. J., Hinton, J., Pallen, M. & other authors ( 2006; ). A novel strategy for the identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites in closely related bacteria. Nucleic Acids Res 34, e3.[CrossRef]
    [Google Scholar]
  34. Pedersen, A. G., Jensen, L. J., Brunak, S., Staerfeldt, H. H. & Ussery, D. W. ( 2000; ). A DNA structural atlas for Escherichia coli. J Mol Biol 299, 907–930.[CrossRef]
    [Google Scholar]
  35. Perna, N. T., Plunkett, G., 3rd, Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor. J. & other authors ( 2001; ). Genome sequence of enterohaemorrhagic Escherichia coli O157 : H7. Nature 409, 529–533.[CrossRef]
    [Google Scholar]
  36. Picard, B., Garcia, J. S., Gouriou, S., Duriez, P., Brahimi, N., Bingen, E., Elion, J. & Denamur, E. ( 1999; ). The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 67, 546–553.
    [Google Scholar]
  37. Pribil, P. A. & Haniford, D. B. ( 2003; ). Target DNA bending is an important specificity determinant in target site selection in Tn10 transposition. J Mol Biol 330, 247–259.[CrossRef]
    [Google Scholar]
  38. Radman-Livaja, M., Biswas, T., Ellenberger, T., Landy, A. & Aihara, H. ( 2006; ). DNA arms do the legwork to ensure the directionality of lambda site-specific recombination. Curr Opin Struct Biol 16, 42–50.[CrossRef]
    [Google Scholar]
  39. Redford, P. & Welch, R. A. ( 2002; ). Extraintestinal Escherichia coli as a model system for the study of pathogenicity islands. Curr Top Microbiol Immunol 264, 15–30.
    [Google Scholar]
  40. Reiter, W. D., Palm, P. & Yeats, S. ( 1989; ). Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17, 1907–1914.[CrossRef]
    [Google Scholar]
  41. Ron, E. Z. ( 2006; ). Host specificity of septicemic Escherichia coli: human and avian pathogens. Curr Opin Microbiol 9, 1–5.[CrossRef]
    [Google Scholar]
  42. Rowley, K. B., Elford, R. M., Roberts, I. & Holmes, W. M. ( 1993; ). In vivo regulatory responses of four Escherichia coli operons which encode leucyl-tRNAs. J Bacteriol 175, 1309–1315.
    [Google Scholar]
  43. Saier, M. H., Jr ( 1995; ). Differential codon usage: a safeguard against inappropriate expression of specialized genes? FEBS Lett 362, 1–4.[CrossRef]
    [Google Scholar]
  44. Sannes, M. R., Kuskowski, M. A., Owens, K., Gajewski, A. & Johnson, J. R. ( 2004; ). Virulence factor profiles and phylogenetic background of Escherichia coli isolates from veterans with bacteremia and uninfected control subjects. J Infect Dis 190, 2121–2128.[CrossRef]
    [Google Scholar]
  45. Schnell, R., Abdulkarim, F., Kalman, M. & Isaksson, L. A. ( 2003; ). Functional EF-Tu with large C-terminal extensions in an E. coli strain with a precise deletion of both chromosomal tuf genes. FEBS Lett 538, 139–144.[CrossRef]
    [Google Scholar]
  46. Selander, R. K., Caugant, D. & Whittam, T. S. ( 1987; ). Genetic structure and variation in natural populations of Escherichia coli. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1625–1648. Edited by F. Neidhardt and others. Washington, DC: American Society for Microbiology.
  47. Sharp, P. A. & Li, W. ( 1986; ). Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res 14, 7737–7749.[CrossRef]
    [Google Scholar]
  48. Stordeur, P., Marlier, D., Blanco, J., Oswald, E., Biet, F., Dho-Moulin, M. & Mainil, J. ( 2002; ). Examination of Escherichia coli from poultry for selected adhesin genes important in disease caused by mammalian pathogenic E. coli. Vet Microbiol 84, 231–241.[CrossRef]
    [Google Scholar]
  49. Welch, R. A., Burland, V., Plunkett, G., 3rd, Redford, P., Roesch, P., Rasko, D., Buckles, E. L., Liou, S. R., Boutin, A. & other authors ( 2002; ). Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99, 17020–17024.[CrossRef]
    [Google Scholar]
  50. Williams, K. P. ( 2002; ). Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 30, 866–875.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001958-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001958-0
Loading

Data & Media loading...

Supplements

List of tRNA-associated PAIs and ECDNA identified in strains. [ PDF] (28 kb) strains used in this study. [ PDF] (20 kb) Primers. [ PDF] (16 kb) PCR product analysis for highly variable tDNA loci. [ PDF] (116 kb) DNA curvature at tDNA loci. [ PDF] (632 kb)

PDF

List of tRNA-associated PAIs and ECDNA identified in strains. [ PDF] (28 kb) strains used in this study. [ PDF] (20 kb) Primers. [ PDF] (16 kb) PCR product analysis for highly variable tDNA loci. [ PDF] (116 kb) DNA curvature at tDNA loci. [ PDF] (632 kb)

PDF

List of tRNA-associated PAIs and ECDNA identified in strains. [ PDF] (28 kb) strains used in this study. [ PDF] (20 kb) Primers. [ PDF] (16 kb) PCR product analysis for highly variable tDNA loci. [ PDF] (116 kb) DNA curvature at tDNA loci. [ PDF] (632 kb)

PDF

List of tRNA-associated PAIs and ECDNA identified in strains. [ PDF] (28 kb) strains used in this study. [ PDF] (20 kb) Primers. [ PDF] (16 kb) PCR product analysis for highly variable tDNA loci. [ PDF] (116 kb) DNA curvature at tDNA loci. [ PDF] (632 kb)

PDF

List of tRNA-associated PAIs and ECDNA identified in strains. [ PDF] (28 kb) strains used in this study. [ PDF] (20 kb) Primers. [ PDF] (16 kb) PCR product analysis for highly variable tDNA loci. [ PDF] (116 kb) DNA curvature at tDNA loci. [ PDF] (632 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error