1887

Abstract

The lead enzymes of polyamine biosynthesis, i.e. ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), were not detected in [the limit of detection for ODC and ADC was 5 pmol min (mg protein)], indicating that lacks a forward-directed polyamine biosynthetic pathway, and is therefore a polyamine auxotroph. The biochemical results were supported by results obtained from data-mining the genome. However, it was possible to demonstrate the presence of a highly active backconversion pathway that formed spermidine from spermine, and putrescine from spermidine, via the combined action of spermidine/spermine -acetyltransferase (SSAT) or spermidine -acetyltransferase (SAT) and polyamine oxidase (PAO). With spermine as the substrate, SSAT had a specific activity of 1.84 nmol min (mg protein), and an apparent for spermine of 180 mM; with spermidine as the substrate, the SAT had a specific activity of 3.95 nmol min (mg protein), and a for spermidine of 240 mM. PAO had a specific activity of 10.6 nmol min (mg protein), and a for acetylspermine of 36 mM. Furthermore, the results demonstrated that SSAT was 50 % inhibited by 30 mM di(ethyl)spermine. The parasite actively transported arginine and ornithine, which were converted via the arginine dihydrolase pathway to citrulline and carbamoyl phosphate, resulting in the formation of ATP via carbamate kinase. The lack of polyamine biosynthesis by is contrasted with polyamine metabolism by other apicomplexans.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001768-0
2007-04-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1123.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001768-0&mimeType=html&fmt=ahah

References

  1. Abrahamsen, M. S., Templeton, T. J., Enomoto, S., Abrahante, J. E., Zhu, G., Lancto, C. A., Deng, M., Liu, C., Widmer, G. & other authors ( 2004; ). Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304, 441–445.[CrossRef]
    [Google Scholar]
  2. Bacchi, C. J. & Yarlett, N. ( 1995; ). Polyamine metabolism. In Biochemistry and Molecular Biology of Parasites, pp. 119–131. Edited by J. J. Marr & M. Muller. New York: Academic Press.
  3. Bacchi, C. J. & Yarlett, N. ( 2002; ). Polyamine metabolism as a chemotherapeutic target in protozoan parasites. Mini Rev Med Chem 2, 553–563.[CrossRef]
    [Google Scholar]
  4. Boyde, T. R. & Rahmatullah, M. ( 1980; ). Optimization of conditions for the colorimetric detection of citrulline using diacetyl monoxime. Anal Biochem 107, 424–431.[CrossRef]
    [Google Scholar]
  5. Bush, A. O., Fernandez, J. C., Esch, G. W. & Seed, J. R. ( 2001; ). Parasitism: the Diversity and Ecology of Animal Parasites, pp. 66–94. Cambridge: Cambridge University Press.
  6. Cai, X., Fuller, A. L., McDougald, L. R. & Zhu, G. ( 2003; ). Apicoplast genome of the coccidian Eimeria tenella. Gene 321, 39–46.[CrossRef]
    [Google Scholar]
  7. Cohen, S. S. ( 1998; ). A Guide to the Polyamines, pp. 122–230. New York: Oxford University Press.
  8. Coombs, G. H., Denton, H., Brown, S. M. A. & Thong, K.-W. ( 1977; ). Biochemistry of the coccidia. Adv Parasitol 39, 141–226.
    [Google Scholar]
  9. Das Gupta, R., Krause-Ihle, T., Bergmann, B., Müller, I. B., Khomutov, A. R., Müller, S., Walter, R. D. & Lüersen, K. ( 2005; ). 3-Aminooxy-1-aminopropane and derivatives have an antiproliferative effect on cultured Plasmodium falciparum by decreasing intracellular polyamine concentrations. Antimicrob Agents Chemother 49, 2857–2864.[CrossRef]
    [Google Scholar]
  10. Derouin, F. & Chastang, C. ( 1988; ). Enzyme immunoassay to assess effect of antimicrobial agents on Toxoplasma gondii in tissue culture. Antimicrob Agents Chemother 32, 303–307.[CrossRef]
    [Google Scholar]
  11. Entzeroth, R., Mattig, F. R. & Werner-Meier, R. ( 1998; ). Structure and function of the parasitophorous vacuole in Eimeria species. Int J Parasitol 28, 1015–1018.[CrossRef]
    [Google Scholar]
  12. Fichera, M. & Roos, D. S. ( 1997; ). A plastid organelle as a drug target in apicomplexan parasites. Nature 390, 407–409.[CrossRef]
    [Google Scholar]
  13. Furtado, G. C., Cao, Y. & Joiner, K. A. ( 1992; ). Lamnin on Toxoplasma gondii mediates parasite binding to the β-1 integrin receptor α-6 β-1 on human foreskin fibroblasts of Chinese hamster ovary cells. Infect Immunol 60, 4925–4931.
    [Google Scholar]
  14. Haider, N., Eschbach, M.-L., de Souza Dias, S., Gilberger, T.-W., Walter, R. D. & Lüersen, K. ( 2005; ). The spermidine synthase of the malaria parasite Plasmodium falciparum: molecular and biochemical characterization of the polyamine synthesis enzyme. Mol Biochem Parasitol 142, 224–236.[CrossRef]
    [Google Scholar]
  15. Hamana, K. & Matsuzaki, S. ( 1992; ). Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol 18, 261–283.[CrossRef]
    [Google Scholar]
  16. Hanson, W. L., Bradford, M. M., Chapman, W. L., Waits, V. B., McCann, P. P. & Sjoerdsma, A. ( 1982; ). α-Difluoromethylornithine: a promising lead for preventative chemotherapy for coccidiosis. Am J Vet Res 43, 1651–1653.
    [Google Scholar]
  17. Hempelmann, E., Ling, I. & Wilson, R. J. ( 1981; ). S-antigens and isozymes in strains of Plasmodium falciparum. Trans R Soc Trop Med Hyg 75, 855–858.[CrossRef]
    [Google Scholar]
  18. Hofflin, J. M., Guptill, D. R., Araujo, F. G. & Remmington, J. S. ( 1985; ). Difluoromethylornithine and formycin B in toxoplasmosis. J Infect Dis 152, 1101.[CrossRef]
    [Google Scholar]
  19. Keithly, J. S., Zhu, G., Upton, S. J., Woods, K. M., Martinez, M. P. & Yarlett, N. ( 1997; ). Polyamine biosynthesis in Cryptosporidium parvum and its implications for chemotherapy. Mol Biochem Parasitol 88, 35–42.[CrossRef]
    [Google Scholar]
  20. Kohler, S., Delwiche, C. F., Denny, P. W., Tilney, P., Webster, P., Wilson, R. J. M., Palmer, J. D. & Roos, D. S. ( 1997; ). A plastid of probable green algal origin in apicomplexan parasites. Science 275, 1485–1489.[CrossRef]
    [Google Scholar]
  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. ( 1951; ). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265–275.
    [Google Scholar]
  22. Moraes, A. M. M., Pessôa, C. N., Vommaro, R. C., De Souza, W., de Mello, F. G. & Hokoç, J. N. ( 2004; ). Cultured embryonic retina systems as a model for the study of underlying mechanisms of Toxoplasma gondii infection. Invest Ophthamol Vis Sci 45, 2813–2821.[CrossRef]
    [Google Scholar]
  23. Riordan, C. E., Ault, J. G., Langreth, S. G. & Keithly, J. S. ( 2003; ). Cryptosporidium parvum Cpn60 targets a relict organelle. Curr Genet 44, 138–147.[CrossRef]
    [Google Scholar]
  24. San Martin-Nuñez, B. V., Ordoñez-Escudero, D. & Alunda, J. M. ( 1988; ). Preventative treatment of rabbit coccidiosis with α-difluoromethylornithine. Vet Parasitol 30, 1–10.[CrossRef]
    [Google Scholar]
  25. Seabra, S. H., Da Matta, R. A., de Mello, F. G. & de Souza, W. ( 2004; ). Endogenous polyamine levels in macrophages are sufficient to support growth of Toxoplasma gondii. J Parasitol 90, 455–460.[CrossRef]
    [Google Scholar]
  26. Slapeta, J. & Keithly, J. S. ( 2004; ). Cryptosporidium parvum mitochondrial-type HSP70 targets homologous and heterologous mitochondria. Eukaryot Cell 3, 483–494.[CrossRef]
    [Google Scholar]
  27. Smith, T. A. ( 1983; ). Arginine decarboxylase (oat seedlings). Methods Enzymol 94, 176–180.
    [Google Scholar]
  28. Thompson, R. C., Olson, M. E., Zhu, G., Enomoto, S., Abrahamsen, M. S. & Hijjawi, N. S. ( 2005; ). Cryptosporidium and cryptosporidiosis. Adv Parasitol 59, 77–158.
    [Google Scholar]
  29. Wallace, H. M., Fraser, A. V. & Hughes, A. ( 2003; ). A perspective of polyamine metabolism. Biochem J 376, 1–14.[CrossRef]
    [Google Scholar]
  30. Wrenger, C., Lüersen, K., Krause, T., Müller, S. & Walter, R. D. ( 2001; ). The Plasmodium falciparum bifunctional ornithine decarboxylase, S-adenosyl-l-methionine decarboxylase, enables a well balanced polyamine synthesis without domain-domain interaction. J Biol Chem 276, 29651–29656.[CrossRef]
    [Google Scholar]
  31. Yarlett, N. & Bacchi, C. J. ( 1988; ). Effect of dl-α-difluoromethylornithine on polyamine synthesis and interconversion in Trichomonas vaginalis grown in semi-defined medium. Mol Biochem Parasitol 31, 1–9.[CrossRef]
    [Google Scholar]
  32. Yarlett, N., Goldberg, B., Moharrami, M. A. & Bacchi, C. J. ( 1992; ). Inhibition of Trichomonas vaginalis ornithine decarboxylase by amino acid analogs. Biochem Pharmacol 44, 243–250.[CrossRef]
    [Google Scholar]
  33. Yarlett, N., Martinez, M. P., Goldberg, B., Kramer, D. L. & Porter, C. W. ( 2000; ). Dependence of Trichomonas vaginalis upon polyamine backconversion. Microbiol 146, 2715–2722.
    [Google Scholar]
  34. Yarlett, N., Wu, G., Waters, W. R., Harp, J. A., Wannemuehler, M. J., Morada, M., Athanasopoulos, D., Martinez, M. P., Upton, S. J. & other authors ( 2007; ). Cryptosporidium parvum spermidine/spermine N 1-acetyltransferase exhibits different characteristics to the host enzyme. Mol Biochem Parasitol (in press).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001768-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001768-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error