1887

Abstract

The lead enzymes of polyamine biosynthesis, i.e. ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), were not detected in [the limit of detection for ODC and ADC was 5 pmol min (mg protein)], indicating that lacks a forward-directed polyamine biosynthetic pathway, and is therefore a polyamine auxotroph. The biochemical results were supported by results obtained from data-mining the genome. However, it was possible to demonstrate the presence of a highly active backconversion pathway that formed spermidine from spermine, and putrescine from spermidine, via the combined action of spermidine/spermine -acetyltransferase (SSAT) or spermidine -acetyltransferase (SAT) and polyamine oxidase (PAO). With spermine as the substrate, SSAT had a specific activity of 1.84 nmol min (mg protein), and an apparent for spermine of 180 mM; with spermidine as the substrate, the SAT had a specific activity of 3.95 nmol min (mg protein), and a for spermidine of 240 mM. PAO had a specific activity of 10.6 nmol min (mg protein), and a for acetylspermine of 36 mM. Furthermore, the results demonstrated that SSAT was 50 % inhibited by 30 mM di(ethyl)spermine. The parasite actively transported arginine and ornithine, which were converted via the arginine dihydrolase pathway to citrulline and carbamoyl phosphate, resulting in the formation of ATP via carbamate kinase. The lack of polyamine biosynthesis by is contrasted with polyamine metabolism by other apicomplexans.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001768-0
2007-04-01
2020-08-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1123.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001768-0&mimeType=html&fmt=ahah

References

  1. Abrahamsen M. S., Templeton T. J., Enomoto S., Abrahante J. E., Zhu G., Lancto C. A., Deng M., Liu C., Widmer G.. & other authors 2004; Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science304:441–445[CrossRef]
    [Google Scholar]
  2. Bacchi C. J., Yarlett N.. 1995; Polyamine metabolism. In Biochemistry and Molecular Biology of Parasites pp119–131 Edited by Marr J. J.. Muller M.. New York: Academic Press;
    [Google Scholar]
  3. Bacchi C. J., Yarlett N.. 2002; Polyamine metabolism as a chemotherapeutic target in protozoan parasites. Mini Rev Med Chem2:553–563[CrossRef]
    [Google Scholar]
  4. Boyde T. R., Rahmatullah M.. 1980; Optimization of conditions for the colorimetric detection of citrulline using diacetyl monoxime. Anal Biochem107:424–431[CrossRef]
    [Google Scholar]
  5. Bush A. O., Fernandez J. C., Esch G. W., Seed J. R.. 2001; Parasitism: the Diversity and Ecology of Animal Parasites pp66–94 Cambridge: Cambridge University Press;
    [Google Scholar]
  6. Cai X., Fuller A. L., McDougald L. R., Zhu G.. 2003; Apicoplast genome of the coccidian Eimeria tenella. Gene321:39–46[CrossRef]
    [Google Scholar]
  7. Cohen S. S.. 1998; A Guide to the Polyamines pp122–230 New York: Oxford University Press;
    [Google Scholar]
  8. Coombs G. H., Denton H., Brown S. M. A., Thong K.-W.. 1977; Biochemistry of the coccidia. Adv Parasitol39:141–226
    [Google Scholar]
  9. Das Gupta R., Krause-Ihle T., Bergmann B., Khomutov A. R., Walter R. D., Müller I. B., Müller S., Lüersen K.. 2005; 3-Aminooxy-1-aminopropane and derivatives have an antiproliferative effect on cultured Plasmodium falciparum by decreasing intracellular polyamine concentrations. Antimicrob Agents Chemother49:2857–2864[CrossRef]
    [Google Scholar]
  10. Derouin F., Chastang C.. 1988; Enzyme immunoassay to assess effect of antimicrobial agents on Toxoplasma gondii in tissue culture. Antimicrob Agents Chemother32:303–307[CrossRef]
    [Google Scholar]
  11. Entzeroth R., Mattig F. R., Werner-Meier R.. 1998; Structure and function of the parasitophorous vacuole in Eimeria species. Int J Parasitol28:1015–1018[CrossRef]
    [Google Scholar]
  12. Fichera M., Roos D. S.. 1997; A plastid organelle as a drug target in apicomplexan parasites. Nature390:407–409[CrossRef]
    [Google Scholar]
  13. Furtado G. C., Cao Y., Joiner K. A.. 1992; Lamnin on Toxoplasma gondii mediates parasite binding to the β -1 integrin receptor α -6 β -1 on human foreskin fibroblasts of Chinese hamster ovary cells. Infect Immunol60:4925–4931
    [Google Scholar]
  14. Haider N., Eschbach M.-L., de Souza Dias S., Gilberger T.-W., Walter R. D., Lüersen K.. 2005; The spermidine synthase of the malaria parasite Plasmodium falciparum : molecular and biochemical characterization of the polyamine synthesis enzyme. Mol Biochem Parasitol142:224–236[CrossRef]
    [Google Scholar]
  15. Hamana K., Matsuzaki S.. 1992; Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol18:261–283[CrossRef]
    [Google Scholar]
  16. Hanson W. L., Bradford M. M., Chapman W. L., Waits V. B., McCann P. P., Sjoerdsma A.. 1982; α -Difluoromethylornithine: a promising lead for preventative chemotherapy for coccidiosis. Am J Vet Res43:1651–1653
    [Google Scholar]
  17. Hempelmann E., Ling I., Wilson R. J.. 1981; S-antigens and isozymes in strains of Plasmodium falciparum. Trans R Soc Trop Med Hyg75:855–858[CrossRef]
    [Google Scholar]
  18. Hofflin J. M., Guptill D. R., Araujo F. G., Remmington J. S.. 1985; Difluoromethylornithine and formycin B in toxoplasmosis. J Infect Dis152:1101[CrossRef]
    [Google Scholar]
  19. Keithly J. S., Zhu G., Upton S. J., Woods K. M., Martinez M. P., Yarlett N.. 1997; Polyamine biosynthesis in Cryptosporidium parvum and its implications for chemotherapy. Mol Biochem Parasitol88:35–42[CrossRef]
    [Google Scholar]
  20. Kohler S., Delwiche C. F., Denny P. W., Tilney P., Webster P., Wilson R. J. M., Palmer J. D., Roos D. S.. 1997; A plastid of probable green algal origin in apicomplexan parasites. Science275:1485–1489[CrossRef]
    [Google Scholar]
  21. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. 1951; Protein measurement with the Folin phenol reagent. J Biol Chem193:265–275
    [Google Scholar]
  22. Moraes A. M. M., Vommaro R. C., De Souza W., de Mello F. G., Pessôa C. N., Hokoç J. N.. 2004; Cultured embryonic retina systems as a model for the study of underlying mechanisms of Toxoplasma gondii infection. Invest Ophthamol Vis Sci45:2813–2821[CrossRef]
    [Google Scholar]
  23. Riordan C. E., Ault J. G., Langreth S. G., Keithly J. S.. 2003; Cryptosporidium parvum Cpn60 targets a relict organelle. Curr Genet44:138–147[CrossRef]
    [Google Scholar]
  24. San Martin-Nuñez B. V., Ordoñez-Escudero D., Alunda J. M.. 1988; Preventative treatment of rabbit coccidiosis with α -difluoromethylornithine. Vet Parasitol30:1–10[CrossRef]
    [Google Scholar]
  25. Seabra S. H., Da Matta R. A., de Mello F. G., de Souza W.. 2004; Endogenous polyamine levels in macrophages are sufficient to support growth of Toxoplasma gondii. J Parasitol90:455–460[CrossRef]
    [Google Scholar]
  26. Slapeta J., Keithly J. S.. 2004; Cryptosporidium parvum mitochondrial-type HSP70 targets homologous and heterologous mitochondria. Eukaryot Cell3:483–494[CrossRef]
    [Google Scholar]
  27. Smith T. A.. 1983; Arginine decarboxylase (oat seedlings. Methods Enzymol94:176–180
    [Google Scholar]
  28. Thompson R. C., Olson M. E., Zhu G., Enomoto S., Abrahamsen M. S., Hijjawi N. S.. 2005; Cryptosporidium and cryptosporidiosis. Adv Parasitol59:77–158
    [Google Scholar]
  29. Wallace H. M., Fraser A. V., Hughes A.. 2003; A perspective of polyamine metabolism. Biochem J376:1–14[CrossRef]
    [Google Scholar]
  30. Wrenger C., Krause T., Lüersen K., Müller S., Walter R. D.. 2001; The Plasmodium falciparum bifunctional ornithine decarboxylase, S -adenosyl-l-methionine decarboxylase, enables a well balanced polyamine synthesis without domain-domain interaction. J Biol Chem276:29651–29656[CrossRef]
    [Google Scholar]
  31. Yarlett N., Bacchi C. J.. 1988; Effect of dl- α -difluoromethylornithine on polyamine synthesis and interconversion in Trichomonas vaginalis grown in semi-defined medium. Mol Biochem Parasitol31:1–9[CrossRef]
    [Google Scholar]
  32. Yarlett N., Goldberg B., Moharrami M. A., Bacchi C. J.. 1992; Inhibition of Trichomonas vaginalis ornithine decarboxylase by amino acid analogs. Biochem Pharmacol44:243–250[CrossRef]
    [Google Scholar]
  33. Yarlett N., Martinez M. P., Goldberg B., Kramer D. L., Porter C. W.. 2000; Dependence of Trichomonas vaginalis upon polyamine backconversion. Microbiol146:2715–2722
    [Google Scholar]
  34. Yarlett N., Wu G., Waters W. R., Harp J. A., Wannemuehler M. J., Morada M., Athanasopoulos D., Martinez M. P., Upton S. J.. & other authors 2007; Cryptosporidium parvum spermidine/spermine N 1-acetyltransferase exhibits different characteristics to the host enzyme. Mol Biochem Parasitol (in press
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001768-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001768-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error