1887

Abstract

Identification of protein translation start sites is largely a bioinformatics exercise, with relatively few confirmed by N-terminal sequencing. Translation start site determination is critical for defining both the protein sequence and the upstream DNA which may contain regulatory motifs. It is demonstrated here that translation start sites can be determined during routine protein identification, using MALDI-MS and MS/MS data to select the correct N-terminal sequence from a list of alternatives generated . Applying the method to 13 proteins from , 11 predicted translational start sites were confirmed, and two reassigned. The authors suggest that these data (be they confirmation or reassignments) are important for the annotation of both this genome and those of organisms with related genes. It was also shown that N-acetylation, reported to be rare in prokaryotes, was present in three of the 13 proteins (23 %), suggesting that in the mycobacteria this modification may be common, and an important regulator of protein function, although more proteins need to be analysed. This method can be performed with little or no additional experimental work during proteomics investigations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001537-0
2007-02-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/521.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001537-0&mimeType=html&fmt=ahah

References

  1. Bendtsen J. D., Nielsen H., Brunak S., von Heijne G. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795 [CrossRef]
    [Google Scholar]
  2. Brent M. R. 2005; Genome annotation past, present, and future: how to define an ORF at each locus. Genome Res 15:1777–1786 [CrossRef]
    [Google Scholar]
  3. Cagney G., Amiri S., Premawaradena T., Lindo M., Emili A. 2003; In silico proteome analysis to facilitate proteomics experiments using mass spectrometry. Proteome Sci 1:5 [CrossRef]
    [Google Scholar]
  4. Camus J. C., Pryor M. J., Medigue C., Cole S. T. 2002; Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 148:2967–2973
    [Google Scholar]
  5. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  6. Doherty N. S., Littman B. H., Reilly K., Swindell A. C., Buss J. M., Anderson N. L. 1998; Analysis of changes in acute-phase plasma proteins in an acute inflammatory response and in rheumatoid arthritis using two-dimensional gel electrophoresis. Electrophoresis 19:355–363 [CrossRef]
    [Google Scholar]
  7. Edman P. J. 1950; Method for determination of the amino acid sequence in peptides. Acta Chem Scand 4:283–293 [CrossRef]
    [Google Scholar]
  8. Edwards M. T., Rison S. C., Stoker N. G., Wernisch L. 2005; A universally applicable method of operon map prediction on minimally annotated genomes using conserved genomic context. Nucleic Acids Res 33:3253–3262 [CrossRef]
    [Google Scholar]
  9. Gevaert K., Goethals M., Martens L., Van Damme J., Staes A., Thomas G. R., Vandekerckhove J. 2003; Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol 21:566–569 [CrossRef]
    [Google Scholar]
  10. Jaffe J. D., Berg H. C., Church G. M. 2004; Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics 4:59–77 [CrossRef]
    [Google Scholar]
  11. Jungblut P. R., Schaible U. E., Mollenkopf H. J., Zimny-Arndt U., Raupach B., Mattow J., Halada P., Lamer S., Hagens K., Kaufmann S. H. 1999; Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 33:1103–1117
    [Google Scholar]
  12. Jungblut P. R., Bumann D., Haas G., Zimny-Arndt U., Holland P., Lamer S., Siejak F., Aebischer A., Meyer T. F. 2000; Comparative proteome analysis of Helicobacter pylori . Mol Microbiol 36:710–725
    [Google Scholar]
  13. Jungblut P. R., Muller E. C., Mattow J., Kaufmann S. H. 2001; Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics. Infect Immun 69:5905–5907 [CrossRef]
    [Google Scholar]
  14. Krause E., Wenschuh H., Jungblut P. R. 1999; The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal Chem 71:4160–4165 [CrossRef]
    [Google Scholar]
  15. Lamer S., Jungblut P. R. 2001; Matrix-assisted laser desorption-ionization mass spectrometry peptide mass fingerprinting for proteome analysis: identification efficiency after on-blot or in-gel digestion with and without desalting procedures. J Chromatogr B Biomed Sci Appl 752:311–322 [CrossRef]
    [Google Scholar]
  16. Laursen B. S., Sorensen H. P., Mortensen K. K., Sperling-Petersen H. U. 2005; Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 69:101–123 [CrossRef]
    [Google Scholar]
  17. Link A. J., Robison K., Church G. M. 1997; Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis 18:1259–1313 [CrossRef]
    [Google Scholar]
  18. Lipton M. S., Pasa-Tolic L., Anderson G. A. other authors 2002; Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc Natl Acad Sci U S A 99:11049–11054 [CrossRef]
    [Google Scholar]
  19. Movahedzadeh F., Rison S. C., Wheeler P. R., Kendall S. L., Larson T. J., Stoker N. G. 2004; The Mycobacterium tuberculosis Rv1099c gene encodes a GlpX-like class II fructose 1,6-bisphosphatase. Microbiology 150:3499–3505 [CrossRef]
    [Google Scholar]
  20. Okkels L. M., Muller E. C., Schmid M., Rosenkrands I., Kaufmann S. H., Andersen P., Jungblut P. R. 2004; CFP10 discriminates between nonacetylated and acetylated ESAT-6 of Mycobacterium tuberculosis by differential interaction. Proteomics 4:2954–2960 [CrossRef]
    [Google Scholar]
  21. Persson B., Flinta C., Jornvall H., von Heijne G. 1985; Structures of N-terminally acetylated proteins. Eur J Biochem 152:523–527 [CrossRef]
    [Google Scholar]
  22. Polevoda B., Sherman F. 2002; The diversity of acetylated proteins. Genome Biol 3: reviews0006 () http://genomebiology.com/2002/3/5/reviews/0006
    [Google Scholar]
  23. Polevoda B., Sherman F. 2003; N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J Mol Biol 325:595–622 [CrossRef]
    [Google Scholar]
  24. Rittmann D., Schaffer S., Wendisch V. F., Sahm H. 2003; Fructose-1,6-bisphosphatase from Corynebacterium glutamicum : expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch Microbiol 180:285–292 [CrossRef]
    [Google Scholar]
  25. Salgado H., Moreno-Hagelsieb G., Smith T. F., Collado-Vides J. 2000; Operons in Escherichia coli : genomic analyses and predictions. Proc Natl Acad Sci U S A 97:6652–6657 [CrossRef]
    [Google Scholar]
  26. Schmidt F., Donahoe S., Hagens K., Mattow J., Schaible U. E., Kaufmann S. H., Aebersold R., Jungblut P. R. 2004; Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol Cell Proteomics 3:24–42
    [Google Scholar]
  27. Schmidt F., Krah A., Schmid M., Jungblut P. R., Thiede B. 2006; Distinctive mass losses of tryptic peptides generated by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight. Rapid Commun Mass Spectrom 20:933–936 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001537-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001537-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error