1887

Abstract

The published Aspergillus genome sequences (, , ) and further sequence data from , , , , and are the first from a group of related filamentous fungi. They indicate the gains possible from genomic approaches, but also problems that arise after the sequences are finished. Benefits include a greater understanding of genome structure and evolution, insights into gene regulation, predictions of new factors that may be relevant to pathogenicity and the discovery of novel enzymes with biotechnological value. Areas where further developments are needed include gene and structure–function predictions, methods for comparative genome analysis and the interfaces for access to genome information. In addition, strategies for continued maintenance and updating need to be developed at the start of the post-genomic era to increase the value of genome sequences into the future.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001479-0
2007-01-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/1.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001479-0&mimeType=html&fmt=ahah

References

  1. Abe, K., Gomi, K., Hasegawa, F. & Machida, M. ( 2006; ). Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia 162, 143–153.[CrossRef]
    [Google Scholar]
  2. Askenazi, M., Driggers, E. M., Holtzman, D. A., Norman, T. C., Iverson, S., Zimmer, D. P., Boers, M.-E., Blomquist, P. R., Martinez, E. J. & other authors ( 2003; ). Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21, 150–156.[CrossRef]
    [Google Scholar]
  3. Baker, S. C. ( 2006; ). Aspergillus niger genomics: past, present and into the future. Med Mycol 44, S17–S21.[CrossRef]
    [Google Scholar]
  4. Bok, J. W., Hoffmeister, D., Maggio-Hall, L. A., Murillo, R., Glasner, J. D. & Keller, N. P. ( 2006; ). Genomic mining for Aspergillus natural products. Chem Biol 13, 31–37.[CrossRef]
    [Google Scholar]
  5. Caddick, M. X. ( 2004; ). Nitrogen regulation in mycelial fungi. In The Mycota III, Biochemistry and Molecular Biology, 2nd edn, pp. 349–368. Edited by R. Brambl & G. A. Marzluf. Berlin & Heidelberg: Springer.
  6. Edens, L., Dekker, P., Van der Hoeven, R., Deen, F., De Roos, A. & Floris, R. ( 2005; ). Extracellular prolyl endoprotease from Aspergillus niger and its use in the debittering of protein hydrolysates. J Agric Food Chem 53, 7950–7957.[CrossRef]
    [Google Scholar]
  7. Ferreira, M. E. D., Kress, M. R. V. Z., Savoldi, M., Goldman, M. H. S., Hartl, A., Heinekamp, T., Brakhage, A. A. & Goldman, G. H. ( 2006; ). The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5, 207–211.[CrossRef]
    [Google Scholar]
  8. Fungal Genome Initiative Steering Committee ( 2003; ). A whitepaper for comparative fungal genomics. www.broad.mit.edu/annotation/fgi.
  9. Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, L. J., Wortman, J., Batzoglou, S., Lee, S. I., Basturkmen, M., Spevak, C. & other authors ( 2005a; ). Sequence of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438, 1105–1115.[CrossRef]
    [Google Scholar]
  10. Galagan, J. E., Henn, M. R., Ma, L.-J., Cuomo, C. A. & Birren, B. ( 2005b; ). Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15, 1620–1631.[CrossRef]
    [Google Scholar]
  11. Gardiner, D. M. & Howlett, B. J. ( 2005; ). Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol Lett 248, 241–248.[CrossRef]
    [Google Scholar]
  12. Hawksworth, D. L. ( 1991; ). The fungal dimension of biodiversity: magnitude, significance and conservation. Mycol Res 95, 641–655.[CrossRef]
    [Google Scholar]
  13. Kniemeyer, O., Lessing, F., Scheibner, O., Hertweck, C. & Brakhage, A. A. ( 2006; ). Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus. Curr Genet 49, 178–189.[CrossRef]
    [Google Scholar]
  14. Krappmann, S. ( 2006; ). Tools to study molecular mechanisms of Aspergillus pathogenicity. Trends Microbiol 14, 356–364.[CrossRef]
    [Google Scholar]
  15. Lopez, M. & Edens, L. ( 2005; ). Effective prevention of chill-haze in beer using an acid proline-specific endoprotease from Aspergillus niger. J Agric Food Chem 53, 7944–7949.[CrossRef]
    [Google Scholar]
  16. Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., Kusmoto, K., Arima, T., Akita, O. & other authors ( 2005; ). Genome sequencing and analysis of Aspergillus oryzae. Nature 438, 1157–1161.[CrossRef]
    [Google Scholar]
  17. Maiya, S., Grundmann, A., Li, S. M. & Turner, G. ( 2006; ). The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. Chem Biochem 7, 1062–1069.
    [Google Scholar]
  18. Mogensen, J., Nielsen, H. B., Hofmann, G. & Nielsen, J. ( 2006; ). Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol. Fungal Genet Biol 43, 593–603.[CrossRef]
    [Google Scholar]
  19. Nayak, T., Szewczyk, E., Oakley, C. E., Osmani, A., Ukil, L., Murray, S. L., Hynes, M. J., Osmani, S. A. & Oakley, B. R. ( 2006; ). A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172, 1557–1566.
    [Google Scholar]
  20. Nierman, W. C., Pain, A., Anderson, M. J., Wortman, J. R., Kim, H. S., Arroyo, J., Berriman, M., Abe, K., Archer, D. B. & other authors ( 2005; ). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156.[CrossRef]
    [Google Scholar]
  21. Payne, G. A., Nierman, W. C., Wortman, J. R., Pritchard, B. L., Brown, D., Dean, R. A., Bhatnagar, D., Cleveland, T. E., Machida, M. & Yu, J. ( 2006; ). Whole genome comparison of Aspergillus flavus and A. oryzae. Med Mycol 44, S9–S11.[CrossRef]
    [Google Scholar]
  22. Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. & Bufton, A. W. ( 1953; ). The genetics of Aspergillus nidulans. Adv Genet 5, 141–238.
    [Google Scholar]
  23. Royal DSM N. V. ( 2005; ). Annual Report.
  24. Schuster, E., Dunn-Coleman, N., Frisvad, J. & van Dijck, P. ( 2002; ). On the safety of Aspergillus niger – a review. Appl Microbiol Biotechnol 59, 426–435.[CrossRef]
    [Google Scholar]
  25. Wortman, J. R., Fedorova, N., Crabtree, J., Joardar, V., Maiti, R., Haas, B. J., Amedeo, P., Lee, E., Angiuoli, S. V. & other authors ( 2006; ). Whole genome comparison of the A. fumigatus family. Med Mycol 44, S3–37.[CrossRef]
    [Google Scholar]
  26. Yang, L., Ukil, L., Osmani, A., Nahm, F., Davies, J., De Souza, C. P. C., Dou, X. W., Perez-Balaguer, A. & Osmani, S. A. ( 2004; ). Rapid production of gene replacement constructs and generation of a green fluorescent protein-tagged centromeric marker in Aspergillus nidulans. Eukaryot Cell 3, 1359–1362.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001479-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001479-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error