1887

Abstract

Four kinds of bacteriophage (RSL, RSA, RSM and RSS) were isolated from , a soil-borne Gram-negative bacterium that is the causative agent of bacterial wilt in many important crops. The Myovirus-type phages RSL1 and RSA1 contained dsDNA genomes of 240 kbp and 39 kbp, respectively. These phages have relatively wide host ranges and gave large clear plaques with various host strains; especially RSA1 was able to infect all 15 strains of different races or different biovars tested in this study. Three host strains contained RSA1-related sequences in their genomic DNAs, suggesting a lysogenic cycle of RSA1. Two phages, RSM1 and RSS1, were characterized as Ff-type phages (Inovirus) based on their particle morphology, genomic ssDNA and infection cycle. However, despite their similar fibrous morphology, their genome size (9.0 kb for RSM1 and 6.6 kb for RSS1) and genome sequence were different. Strains of that were sensitive to RSM1 were resistant to RSS1 and vice versa. Several strains contained RSM1-related sequences and at least one strain produced RSM1 particles, indicating the lysogenic state of this phage. These phages may be useful as a tool not only for molecular biological studies of pathogenicity but also for specific and efficient detection (RSM1 and RSS1) and control of harmful pathogens (RSL and RSA) in cropping ecosystems as well as growing crops.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001453-0
2007-08-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2630.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001453-0&mimeType=html&fmt=ahah

References

  1. Ausubel F., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1995 Short Protocols in Molecular Biology , 3rd edn. Hoboken, NJ: Wiley;
  2. Brussow H., Canchaya C., Hardt W.-D. 2004; Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602
    [Google Scholar]
  3. Buchen-Osmond C. 2003a Inoviridae. In ICTVdB – The Universal Virus Database , version 3 Oracle, AZ: ICTVdB Management, The Earth Institute; Biosphere 2 Center: Columbia University;
    [Google Scholar]
  4. Buchen-Osmond C. 2003b Myoviridae. In ICTVdB – The Universal Virus Database , version 3 Oracle, AZ: ICTVdB Management, The Earth Institute; Biosphere 2 Center: Columbia University;
    [Google Scholar]
  5. Campos J., Martinez E., Suzarte E., Rodriguez B. L., Marrero K., Silva Y., Ledon T., del Sol R., Fando R. 2003; VGJ φ , a novel filamentous phage of Vibrio cholerae , integrates into the same chromosomal site as CTX φ . J Bacteriol 185:5685–5696
    [Google Scholar]
  6. Canchaya C., Proux C., Fournous G., Bruttin A., Brussow H. 2003; Prophage genomics. Microbiol Mol Biol Rev 67:238–276
    [Google Scholar]
  7. Cheng C.-M., Wang H.-J., Bau H.-J., Kuo T. T. 1999; The primary immunity determinant in modulating the lysogenic immunity of the filamentous bacteriophage cf. J Mol Biol 287:867–876
    [Google Scholar]
  8. Dai H., Chow T. Y., Liao H. J., Chen Z. Y., Chiang K. S. 1988; Nucleotide sequence involved in the neolysogenic insertion of filamentous phage Cf16-v1 into the Xanthomonas campestris pv. citri chromosome. Virology 167:613–620
    [Google Scholar]
  9. Dykstra M. J. 1993 A Manual of Applied Technique for Biological Electron Microscopy pp 147–158 New York: Plenum Press;
  10. Elphinstone J. G., Hennessy J., Wilson J. K., Stead D. 1996; Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. Bull OEPP/EPPO 26:663–678
    [Google Scholar]
  11. Furuya N., Yamasaki S., Nishioka M., Shiraishi I., Iiyama K., Matsuyama N. 1997; Antimicrobial activities of Pseudomonads against plant pathogenic organisms and efficacy of Pseudomonas aeruginosa ATCC7700 against bacterial wilt of tomato. Ann Phytopath Soc Jpn 65:417–424
    [Google Scholar]
  12. Gonzalez M. D., Lichtensteiger C. A., Caughlan R., Vimr E. R. 2002; Conserved filamentous prophage in Escherichia coli O18: K1:H7 and Y ersinia pestis biovar orientalis. J Bacteriol 184:6050–6055
    [Google Scholar]
  13. Hayward A. C. 1991; Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum . Annu Rev Phytopathol 29:65–87
    [Google Scholar]
  14. Hayward A. C. 2000; Ralstonia solanacearum . In Encyclopedia of Microbiology vol 4 pp 32–42 Edited by Lederberg J. San Diego, CA: Academic Press;
    [Google Scholar]
  15. Hertveldt K., Larvigne R., Pleteneva E., Sernova N., Kurochkina L., Korchevskii R., Robben J., Mesyanzhinov V., Krylov V. N., Volckaert G. 2005; Genome comparison of Pseudomonas aeruginosa large phages. J Mol Biol 354:536–545
    [Google Scholar]
  16. Higashiyama T., Yamada T. 1991; Electrophoretic karyotyping and chromosomal gene mapping of Chlorella . Nucleic Acids Res 19:6191–6195
    [Google Scholar]
  17. Hill D. F., Short J., Perharm N. R., Petersen G. B. 1991; DNA sequence of the filamentous bateriophage Pf1. J Mol Biol 218:349–364
    [Google Scholar]
  18. Horita M., Tsuchiya K. 2001; Genetic diversity of Japanese strains of Ralstonia solanacearum . Phytopathology 91:399–407
    [Google Scholar]
  19. Horita M., Tsuchiya K. 2002; Causal agent of bacterial wilt disease Ralstonia solanacearum . In MAFF Microorganism Genetic Resources Manual No: 12 pp 5–8 Tsukuba, Japan: National Institute of Agricultural Sciences;
    [Google Scholar]
  20. Huber K. E., Waldor M. K. 2002; Filamentous phage integration requires the host recombinases XerC and XerD. Nature 417:656–659
    [Google Scholar]
  21. Janse J. D. 1988; A detection method for Pseudomonas solanacearum in symptomless potato tubers and some data on its sensitivity and specificity. Bull OEPP/EPOO Bull 18:343–351
    [Google Scholar]
  22. Krylov V. N. 2001; Phage therapy in terms of bacteriophage genetics: hopes, prospects, safety, limitations. Genetika 37:869–887
    [Google Scholar]
  23. Kuo T. T., Chao Y. S., Lin Y. H., Lin B. Y., Liu L. F., Feng T. Y. 1987a; Integration of the DNA of filamentous bacteriophage Cf1t into the chromosomal DNA of its host. J Virol 61:60–65
    [Google Scholar]
  24. Kuo T. T., Lin Y. H., Huang C. M., Chang S. F., Dai H., Feng T. Y. 1987b; The lysogenic cycle of the filamentous phage Cf1t from Xanthomonas campestris pv. citri . Virology 156305–312
    [Google Scholar]
  25. Kuo T. T., Tan M. S., Su M. T., Yang M. K. 1991; Complete nucleotide sequence of filamentous phage Cf1c from Xanthomonas campestris pv. citri . Nucleic Acids Res 19:2498
    [Google Scholar]
  26. Lin N. T., Chang R. Y., Lee S. J., Tseng Y. H. 2001; Plasmids carrying cloned fragments of RF DNA from the filamentous phage phiLF can be integrated into the host chromosme via site-specific integration and homologous recombination. Mol Genet Genomics 266:425–435
    [Google Scholar]
  27. Miller E. S., Heidelberg J., Eisen J., Nelson W., Durkin A., Ciecko A., Feldblyum T., White O., Paulsen I. other authors 2003; Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol 185:5220–5223
    [Google Scholar]
  28. Model P., Russel M. 1988; Filamentous bacteriophages. In The Bacteriophages vol 2 pp 375–456 Edited by Calendar R. New York: Plenum Press;
    [Google Scholar]
  29. Okabe N., Goto M. 1963; Bacteriophages of plant pathogens. Annu Rev Phytopathol 1:397–418
    [Google Scholar]
  30. Ozawa H., Tanaka H., Ichinose Y., Shiraishi T., Yamada T. 2001; Bacteriophage P4282, a parasite of Ralstonia solanacearum , encodes a bacteriolytic protein important for lytic infection of its host. Mol Genet Genomics 265:95–101
    [Google Scholar]
  31. Rasched I., Oberer E. 1986; Ff coliphages: structural and functional relationships. Microbiol Rev 50:401–427
    [Google Scholar]
  32. Salanoubat M., Genin S., Artiguenave F., Gouzy J., Mangenot S., Ariat M., Billault A., Brottier P., Camus J. C. other authors 2002; Genome sequence of the plant pathogen Ralstonia solanacearum . Nature 415:497–502
    [Google Scholar]
  33. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
  34. Seal S. E., Jackson L. A., Yong J. P. W., Daniels M. J. 1993; Differentiation of Pseudomonas solanacearum , Pseudomonas syzygii , Pseudomonas picketii and the blood disease bacterium by partial 16S rRNA sequencing: construction of oligonucleotide primers for sensitive detection by polymerase chain reaction. J Gen Microbiol 139:1587–1594
    [Google Scholar]
  35. Seed K. D., Dennis J. J. 2005; Isolation and characterization of bacteriophages of the Burkholderia cepacia complex. FEMS Microbiol Lett 251:273–280
    [Google Scholar]
  36. Simpson A. J., Reinach F. C., Arruda P., Abreu F. A., Acencio M., Alvarenga R., Alves L. M. C., Araya J. E., Baia G. S. other authors 2000; The genome sequence of the plant pathogen Xylella fastidiosa . Nature 406:151–157
    [Google Scholar]
  37. Smith G. P. 1985; Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317
    [Google Scholar]
  38. Smith G. P. 1991; Surface presentation of protein epitopes using bacteriophage expression systems. Curr Opin Biotechnol 2:668–673
    [Google Scholar]
  39. Tanaka H., Negishi H., Maeda H. 1990; Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Ann Phytopathol Soc Jpn 56:243–246
    [Google Scholar]
  40. Toyoda H., Kakutani K., Ikeda S., Goto S., Tanaka H., Ouchi S. 1991; Characterization of deoxyribonucleic acid of virulent bacteriophage and its infectivity to host bacteria, Pseudomonas solanacearum . J Phytopathol 131:11–21
    [Google Scholar]
  41. Van der Wolf J. M., Vriend S. G. C., Kastelein O., Nijhuis E. H., Van Bekkum P. J., Van Vuurde J. W. L. 2000; Immunofluorescence colony-staining (IFC) for detection and quantification of Ralstonia ( Pseudomonas ) solanacearum biovar 2 (race 3) in soil and verification of positive results by PCR and dilution plating. Eur J Plant Pathol 106:123–133
    [Google Scholar]
  42. Vidaver A. K. 1976; Prospects for control of phytopathogenic bacteria by bacteriophages and bacteriocins. Annu Rev Phytopathol 14:451–465
    [Google Scholar]
  43. Weller S. A., Elphinstone J. G., Smith N. C., Boonham N., Stead N. 2000; Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Appl Environ Microbiol 66:2853–2858
    [Google Scholar]
  44. Winstead N. N., Kelman A. 1952; Inoculation techniques for evaluating resistance to Pseudomonas solanacearum . Phytopathology 42:628–634
    [Google Scholar]
  45. Yabuuchi E., Kosako V., Yano I., Hotta H., Nishiuchi Y. 1995 Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia picketii (Ralston, Palleroni and Doudoroff 1973) comb.nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov . Microbiol Immunol 39:897–904
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001453-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001453-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error