1887

Abstract

pathovar () is the causal agent of black rot disease in cruciferous plants. The extracellular polysaccharide (EPS) produced by is an important pathogenicity factor and also has a range of industrial uses. In preliminary work a number of transposon-mediated insertion mutants in with defects in EPS production were identified. Here, one of these mutated loci was investigated in detail. Six ORFs within the locus (ORFs ) were disrupted by plasmid integration. Mutation of , or resulted in significantly reduced EPS production and significantly reduced virulence on the host plant Chinese radish (). The EPS production and virulence of , and mutants could be restored by intact , and genes, respectively, when provided . Although bioinformatic analysis suggested a role for XC3814 and XC3815 in lipopolysaccharide biosynthesis, the lipopolysaccharides produced by the mutants were indistinguishable from those of the wild-type, as judged by electrophoretic mobility in SDS-polyacrylamide gels. These results reveal that , and comprise a novel gene cluster involved in EPS production and virulence of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001388-0
2007-03-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/737.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001388-0&mimeType=html&fmt=ahah

References

  1. Alvarez A. M. and others 2000; Black rot of crucifers. In Mechanisms of Resistance to Plant Diseases pp 21–52 Edited by Slusarenko A. J. Dordrecht: Kluwer;
    [Google Scholar]
  2. Bengoechea J. A., Pinta E., Salminen T., Oertelt C., Holst O., Radziejewska-Lebrecht J., Piotrowska-Seget Z., Venho R., Skurnik M. 2002; Functional characterization of Gne (UDP- N -acetylglucosamine-4-epimerase), Wzz (chain length determinant), and Wzy (O-antigen polymerase) of Yersinia enterocolitica serotype O : 8. J Bacteriol 184:4277–4287 [CrossRef]
    [Google Scholar]
  3. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 41:459–472 [CrossRef]
    [Google Scholar]
  4. Campbell J. A., Davies G. J., Bulone V., Henrissat B. 1997; A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326:929–939
    [Google Scholar]
  5. Capage M. A., Doherty D. H., Betlach M. R., Vanderslice R. W. 1987; Recombinant-DNA mediated production of xanthan gum. International patent WO87/05938
  6. Collins L. V., Hackett J. 1991; Molecular cloning, characterization, and nucleotide sequence of the rfc gene, which encodes an O-antigen polymerase of Salmonella typhimurium . J Bacteriol 173:2521–2529
    [Google Scholar]
  7. Corsaro M. M., De Castro C., Molinaro A., Parrilli M. 2001; Structure of lipopolysaccharides from phytopathogenic bacteria. In Recent Research Developments in Phytochemistry pp 119–138 Edited by Pandalai G. Trivandrum: Research Signpost;
    [Google Scholar]
  8. Daniels M. J., Barber C. E., Turner P. C., Cleary W. G., Sawczyc M. K. 1984a; Isolation of mutants of Xanthomonas campestris pathovar campestris showing altered pathogenicity. J Gen Microbiol 130:2447–2455
    [Google Scholar]
  9. Daniels M. J., Barber C. E., Turner P. C., Sawczyc M. K., Byrde R. J., Fielding A. H. 1984b; Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFR1. EMBO J 3:3323–3328
    [Google Scholar]
  10. da Silva A. C., Ferro J. A., Reinach F. C., Farah C. S., Furlan L. R., Quaggio R. B., Monteiro-Vitorello C. B., Van Sluys M. A., Almeida N. F. other authors 2002; Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463 [CrossRef]
    [Google Scholar]
  11. De Crècy-Lagard V., Glaser P., Lejeune P., Sismeiro O., Barber C. E., Daniels M. J., Danchin A. 1990; A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity. J Bacteriol 172:5877–5883
    [Google Scholar]
  12. De Kievit T. R., Dasgupta T., Schweizer H., Lam J. S. 1995; Molecular cloning and characterization of the rfc gene of Pseudomonas aeruginosa (serotype 05. Mol Microbiol 16:565–574 [CrossRef]
    [Google Scholar]
  13. Dow J. M., Daniels M. J. 1994; Pathogenicity determinants and global regulation of pathogenicity in Xanthomonas campestris pv. campestris . In Molecular and Cellular Mechanisms in Bacterial Pathogenesis of Plants and Animals pp 29–41 Edited by Dangl J. L. Berlin: Springer;
    [Google Scholar]
  14. Dow J. M., Crossman L., Findlay K., He Y.-Q., Feng J.-X., Tang J.-L. 2003; Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100:10995–11000 [CrossRef]
    [Google Scholar]
  15. Fitzgerald S. N., Foster T. J. 2000; Molecular analysis of the tagF gene, encoding CDP-glycerol : poly(glycerophosphate) glycerophosphotransferase of Staphylococcus epidermidis ATCC 14990. J Bacteriol 182:1046–1052 [CrossRef]
    [Google Scholar]
  16. Grozdanov L., Zahringer U., Blum-Oehler G., Brade L., Henne A., Knirel Y. A., Schombel U., Schulze J., Sonnenborn U. other authors 2002; A single nucleotide exchange in the wzy gene is responsible for the semirough O6 lipopolysaccharide phenotype and serum sensitivity of Escherichia coli strain Nissle 1917. J Bacteriol 184:5912–5925 [CrossRef]
    [Google Scholar]
  17. Guasch J. F., Pique N., Climent N., Ferrer S., Merino S., Rubires X., Tomas J. M., Regue M. 1996; Cloning and characterization of two Serratia marcescens genes involved in core lipopolysaccharide biosynthesis. J Bacteriol 178:5741–5747
    [Google Scholar]
  18. Henderson R. F., Benson J. M., Hahn F. F., Hobbs C. H., Jones R. K., Mauderly J. L., McClellan R. O., Pickrell J. A. 1985; New approaches for the evaluation of pulmonary toxicity: bronchoalveolar lavage fluid analysis. Fundam Appl Toxicol 5:451–458 [CrossRef]
    [Google Scholar]
  19. Hotte B., Rath-Arnold I., Puhler A., Simon R. 1990; Cloning and analysis of a 35.3-kilobase DNA region involved in exopolysaccharide production by Xanthomonas campestris pv. campestris . J Bacteriol 172:2804–2807
    [Google Scholar]
  20. Huynh T. V., Dahlbeck D., Staskawicz B. J. 1989; Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245:1374–1377 [CrossRef]
    [Google Scholar]
  21. Ielpi L., Couso R. O., Dankert M. A. 1993; Sequential assembly and polymerization of the prenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris . J Bacteriol 175:2490–2500
    [Google Scholar]
  22. Jansson P. E., Keene L., Lindberg B. 1975; Structure of the extracellular polysaccharide from Xanthomonas campestris . Carbohydr Res 45:275–282 [CrossRef]
    [Google Scholar]
  23. Katzen F., Ferreiro D. U., Oddo C. G., Ielmini V., Becker A., Ielpi L., Pühler, A. 1998; Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 180:1607–1617
    [Google Scholar]
  24. Kennedy J. F., Bradshaw I. J. 1984; Production, properties and applications of xanthan. Prog Ind Microbiol 19:319–371
    [Google Scholar]
  25. Kittelberger R., Hilbink F. 1993; Sensitive silver-staining detection of bacterial lipopolysaccharides in polyacrylamide gels. J Biochem Biophys Methods 26:81–86 [CrossRef]
    [Google Scholar]
  26. Köplin R., Arnold W., Hotte B., Simon R., Wang G., Pühler, A. 1992; Genetics of xanthan production in Xanthomonas campestris : the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. J Bacteriol 174:191–199
    [Google Scholar]
  27. Lagares A., Hozbor D. F., Niehaus K., Otero A. J., Lorenzen J., Arnold W., Pühler A. 2001; Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol 183:1248–1258 [CrossRef]
    [Google Scholar]
  28. Leong S. A., Ditta G. S., Helinski D. R. 1982; Heme biosynthesis in Rhizobium . Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti . J Biol Chem 257:8724–8730
    [Google Scholar]
  29. Lesse A. J., Campagnari A. A., Bittner W. E., Apicella M. A. 1990; Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods 126:109–117 [CrossRef]
    [Google Scholar]
  30. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Molinaro A., Silipo A., Lanzetta R., Newman M. A., Dow J. M., Parrilli M. 2003; Structural elucidation of the O-chain of the lipopolysaccharide from Xanthomonas campestris strain 8004. Carbohydr Res 338:277–281 [CrossRef]
    [Google Scholar]
  32. Onsando J. M. 1992; Black rot of crucifers.. In Plant Diseases of International Importance. II: Diseases of Vegetable and Oil Seed Crops pp 243–252 Edited by Chaube H. S., Kumar J., Mukhopadhyay A. N., Singh U. S. Englewood Cliffs, NJ: Prentice Hall;
    [Google Scholar]
  33. Poplawsky A. R., Chun W. 1998; Xanthomonas campestris pv. campestris requires a functional pigB for epiphytic survival and host infection. Mol Plant Microbe Interact 11:466–475 [CrossRef]
    [Google Scholar]
  34. Qian W., Jia Y., Ren S.-X., He Y.-Q., Feng J.-X., Lu L.-F., Sun Q., Ying G., Tang D.-J. other authors 2005; Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris . Genome Res 15:757–767 [CrossRef]
    [Google Scholar]
  35. Raetz C. R., Whitfield C. 2002; Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700 [CrossRef]
    [Google Scholar]
  36. Reeves P. R., Hobbs M., Valvano M. A., Skurnik M., Whitfield C., Coplin D., Kido N., Klena J., Maskell D. other authors 1996; Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4:495–503 [CrossRef]
    [Google Scholar]
  37. Regue M., Climent N., Abitiu N., Coderch N., Merino S., Izquierdo L., Altarriba M., Tomas J. M. 2001; Genetic characterization of the Klebsiella pneumoniae waa gene cluster, involved in core lipopolysaccharide biosynthesis. J Bacteriol 183:3564–3573 [CrossRef]
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Schafer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Puhler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73 [CrossRef]
    [Google Scholar]
  40. Staskawicz B., Dahlbeck D., Keen N., Napoli C. 1987; Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea . J Bacteriol 169:5789–5794
    [Google Scholar]
  41. Tang J.-L., Gough C. L., Daniels M. J. 1990; Cloning of genes involved in negative regulation of production of extracellular enzymes and polysaccharide of Xanthomonas campestris pathovar campestris . Mol Gen Genet 222:157–160
    [Google Scholar]
  42. Tang J.-L., Liu Y.-N., Barber C. E., Dow J. M., Wootton J. C., Daniels M. J. 1991; Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris . Mol Gen Genet 226:409–417
    [Google Scholar]
  43. Tao J., Feng L., Guo H., Li Y., Wang L. 2004; The O-antigen gene cluster of Shigella boydii O11 and functional identification of its wzy gene. FEMS Microbiol Lett 234:125–132 [CrossRef]
    [Google Scholar]
  44. Turner P., Barber C., Daniels M. J. 1984; Behavior of the transposons Tn 5 and Tn 7 in Xanthomonas campestris pv. campestris . Mol Gen Genet 195:101–107 [CrossRef]
    [Google Scholar]
  45. Vanderslice R. W., Doherty D. H., Capage M. A., Betlach M. R., Hassler R. A., Henderson N. M., Ryan-Graniero J., Tecklenburg M. 1990; Genetic engineering of polysaccharide structure in Xanthomonas campestris . In Biomedical and Biotechnological Advances in Industrial Polysaccharides pp 145–156 Edited by Crescenzi V. Dea I. C. M., Paoletti S., Stivala S. S., Sutherland I. W. New York: Gordon & Breach;
    [Google Scholar]
  46. Vojnov A. A., Slater H., Daniels M. J., Dow J. M. 2001; Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol Plant Microbe Interact 14:768–774 [CrossRef]
    [Google Scholar]
  47. Windgassen M., Urban A., Jaeger K. E. 2000; Rapid gene inactivation in Pseudomonas aeruginosa . FEMS Microbiol Lett 193:201–205 [CrossRef]
    [Google Scholar]
  48. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  49. Yun M. H., Torres P. S., El Oirdi M., Rigano L. A., Gonzalez-Lamothe R., Marano M. R., Castagnaro A. P., Dankert M. A., Bouarab K., Vojnov A. A. 2006; Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol 141:178–187 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001388-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001388-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error