1887

Abstract

pathovar () is the causal agent of black rot disease in cruciferous plants. The extracellular polysaccharide (EPS) produced by is an important pathogenicity factor and also has a range of industrial uses. In preliminary work a number of transposon-mediated insertion mutants in with defects in EPS production were identified. Here, one of these mutated loci was investigated in detail. Six ORFs within the locus (ORFs ) were disrupted by plasmid integration. Mutation of , or resulted in significantly reduced EPS production and significantly reduced virulence on the host plant Chinese radish (). The EPS production and virulence of , and mutants could be restored by intact , and genes, respectively, when provided . Although bioinformatic analysis suggested a role for XC3814 and XC3815 in lipopolysaccharide biosynthesis, the lipopolysaccharides produced by the mutants were indistinguishable from those of the wild-type, as judged by electrophoretic mobility in SDS-polyacrylamide gels. These results reveal that , and comprise a novel gene cluster involved in EPS production and virulence of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001388-0
2007-03-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/737.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001388-0&mimeType=html&fmt=ahah

References

  1. Alvarez, A. M. ( 2000; ). Black rot of crucifers. In Mechanisms of Resistance to Plant Diseases, pp. 21–52. Edited by A. J. Slusarenko and others. Dordrecht: Kluwer.
  2. Bengoechea, J. A., Pinta, E., Salminen, T., Oertelt, C., Holst, O., Radziejewska-Lebrecht, J., Piotrowska-Seget, Z., Venho, R. & Skurnik, M. ( 2002; ). Functional characterization of Gne (UDP-N-acetylglucosamine-4-epimerase), Wzz (chain length determinant), and Wzy (O-antigen polymerase) of Yersinia enterocolitica serotype O : 8. J Bacteriol 184, 4277–4287.[CrossRef]
    [Google Scholar]
  3. Boyer, H. W. & Roulland-Dussoix, D. ( 1969; ). A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41, 459–472.[CrossRef]
    [Google Scholar]
  4. Campbell, J. A., Davies, G. J., Bulone, V. & Henrissat, B. ( 1997; ). A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326, 929–939.
    [Google Scholar]
  5. Capage, M. A., Doherty, D. H., Betlach, M. R. & Vanderslice, R. W. ( 1987; ). Recombinant-DNA mediated production of xanthan gum. International patent WO87/05938.
  6. Collins, L. V. & Hackett, J. ( 1991; ). Molecular cloning, characterization, and nucleotide sequence of the rfc gene, which encodes an O-antigen polymerase of Salmonella typhimurium. J Bacteriol 173, 2521–2529.
    [Google Scholar]
  7. Corsaro, M. M., De Castro, C., Molinaro, A. & Parrilli, M. ( 2001; ). Structure of lipopolysaccharides from phytopathogenic bacteria. In Recent Research Developments in Phytochemistry, pp. 119–138. Edited by G. Pandalai. Trivandrum: Research Signpost.
  8. Daniels, M. J., Barber, C. E., Turner, P. C., Cleary, W. G. & Sawczyc, M. K. ( 1984a; ). Isolation of mutants of Xanthomonas campestris pathovar campestris showing altered pathogenicity. J Gen Microbiol 130, 2447–2455.
    [Google Scholar]
  9. Daniels, M. J., Barber, C. E., Turner, P. C., Sawczyc, M. K., Byrde, R. J. & Fielding, A. H. ( 1984b; ). Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFR1. EMBO J 3, 3323–3328.
    [Google Scholar]
  10. da Silva, A. C., Ferro, J. A., Reinach, F. C., Farah, C. S., Furlan, L. R., Quaggio, R. B., Monteiro-Vitorello, C. B., Van Sluys, M. A., Almeida, N. F. & other authors ( 2002; ). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417, 459–463.[CrossRef]
    [Google Scholar]
  11. De Crècy-Lagard, V., Glaser, P., Lejeune, P., Sismeiro, O., Barber, C. E., Daniels, M. J. & Danchin, A. ( 1990; ). A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity. J Bacteriol 172, 5877–5883.
    [Google Scholar]
  12. De Kievit, T. R., Dasgupta, T., Schweizer, H. & Lam, J. S. ( 1995; ). Molecular cloning and characterization of the rfc gene of Pseudomonas aeruginosa (serotype 05). Mol Microbiol 16, 565–574.[CrossRef]
    [Google Scholar]
  13. Dow, J. M. & Daniels, M. J. ( 1994; ). Pathogenicity determinants and global regulation of pathogenicity in Xanthomonas campestris pv. campestris. In Molecular and Cellular Mechanisms in Bacterial Pathogenesis of Plants and Animals, pp. 29–41. Edited by J. L. Dangl. Berlin: Springer.
  14. Dow, J. M., Crossman, L., Findlay, K., He, Y.-Q., Feng, J.-X. & Tang, J.-L. ( 2003; ). Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100, 10995–11000.[CrossRef]
    [Google Scholar]
  15. Fitzgerald, S. N. & Foster, T. J. ( 2000; ). Molecular analysis of the tagF gene, encoding CDP-glycerol : poly(glycerophosphate) glycerophosphotransferase of Staphylococcus epidermidis ATCC 14990. J Bacteriol 182, 1046–1052.[CrossRef]
    [Google Scholar]
  16. Grozdanov, L., Zahringer, U., Blum-Oehler, G., Brade, L., Henne, A., Knirel, Y. A., Schombel, U., Schulze, J., Sonnenborn, U. & other authors ( 2002; ). A single nucleotide exchange in the wzy gene is responsible for the semirough O6 lipopolysaccharide phenotype and serum sensitivity of Escherichia coli strain Nissle 1917. J Bacteriol 184, 5912–5925.[CrossRef]
    [Google Scholar]
  17. Guasch, J. F., Pique, N., Climent, N., Ferrer, S., Merino, S., Rubires, X., Tomas, J. M. & Regue, M. ( 1996; ). Cloning and characterization of two Serratia marcescens genes involved in core lipopolysaccharide biosynthesis. J Bacteriol 178, 5741–5747.
    [Google Scholar]
  18. Henderson, R. F., Benson, J. M., Hahn, F. F., Hobbs, C. H., Jones, R. K., Mauderly, J. L., McClellan, R. O. & Pickrell, J. A. ( 1985; ). New approaches for the evaluation of pulmonary toxicity: bronchoalveolar lavage fluid analysis. Fundam Appl Toxicol 5, 451–458.[CrossRef]
    [Google Scholar]
  19. Hotte, B., Rath-Arnold, I., Puhler, A. & Simon, R. ( 1990; ). Cloning and analysis of a 35.3-kilobase DNA region involved in exopolysaccharide production by Xanthomonas campestris pv. campestris. J Bacteriol 172, 2804–2807.
    [Google Scholar]
  20. Huynh, T. V., Dahlbeck, D. & Staskawicz, B. J. ( 1989; ). Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245, 1374–1377.[CrossRef]
    [Google Scholar]
  21. Ielpi, L., Couso, R. O. & Dankert, M. A. ( 1993; ). Sequential assembly and polymerization of the prenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J Bacteriol 175, 2490–2500.
    [Google Scholar]
  22. Jansson, P. E., Keene, L. & Lindberg, B. ( 1975; ). Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr Res 45, 275–282.[CrossRef]
    [Google Scholar]
  23. Katzen, F., Ferreiro, D. U., Oddo, C. G., Ielmini, V., Becker, A., Pühler, A. & Ielpi, L. ( 1998; ). Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 180, 1607–1617.
    [Google Scholar]
  24. Kennedy, J. F. & Bradshaw, I. J. ( 1984; ). Production, properties and applications of xanthan. Prog Ind Microbiol 19, 319–371.
    [Google Scholar]
  25. Kittelberger, R. & Hilbink, F. ( 1993; ). Sensitive silver-staining detection of bacterial lipopolysaccharides in polyacrylamide gels. J Biochem Biophys Methods 26, 81–86.[CrossRef]
    [Google Scholar]
  26. Köplin, R., Arnold, W., Hotte, B., Simon, R., Wang, G. & Pühler, A. ( 1992; ). Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. J Bacteriol 174, 191–199.
    [Google Scholar]
  27. Lagares, A., Hozbor, D. F., Niehaus, K., Otero, A. J., Lorenzen, J., Arnold, W. & Pühler, A. ( 2001; ). Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol 183, 1248–1258.[CrossRef]
    [Google Scholar]
  28. Leong, S. A., Ditta, G. S. & Helinski, D. R. ( 1982; ). Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti. J Biol Chem 257, 8724–8730.
    [Google Scholar]
  29. Lesse, A. J., Campagnari, A. A., Bittner, W. E. & Apicella, M. A. ( 1990; ). Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods 126, 109–117.[CrossRef]
    [Google Scholar]
  30. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  31. Molinaro, A., Silipo, A., Lanzetta, R., Newman, M. A., Dow, J. M. & Parrilli, M. ( 2003; ). Structural elucidation of the O-chain of the lipopolysaccharide from Xanthomonas campestris strain 8004. Carbohydr Res 338, 277–281.[CrossRef]
    [Google Scholar]
  32. Onsando, J. M. ( 1992; ). Black rot of crucifers. In Plant Diseases of International Importance. II: Diseases of Vegetable and Oil Seed Crops, pp. 243–252. Edited by H. S. Chaube, J. Kumar, A. N. Mukhopadhyay & U. S. Singh. Englewood Cliffs, NJ: Prentice Hall.
  33. Poplawsky, A. R. & Chun, W. ( 1998; ). Xanthomonas campestris pv. campestris requires a functional pigB for epiphytic survival and host infection. Mol Plant Microbe Interact 11, 466–475.[CrossRef]
    [Google Scholar]
  34. Qian, W., Jia, Y., Ren, S.-X., He, Y.-Q., Feng, J.-X., Lu, L.-F., Sun, Q., Ying, G., Tang, D.-J. & other authors ( 2005; ). Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 15, 757–767.[CrossRef]
    [Google Scholar]
  35. Raetz, C. R. & Whitfield, C. ( 2002; ). Lipopolysaccharide endotoxins. Annu Rev Biochem 71, 635–700.[CrossRef]
    [Google Scholar]
  36. Reeves, P. R., Hobbs, M., Valvano, M. A., Skurnik, M., Whitfield, C., Coplin, D., Kido, N., Klena, J., Maskell, D. & other authors ( 1996; ). Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4, 495–503.[CrossRef]
    [Google Scholar]
  37. Regue, M., Climent, N., Abitiu, N., Coderch, N., Merino, S., Izquierdo, L., Altarriba, M. & Tomas, J. M. ( 2001; ). Genetic characterization of the Klebsiella pneumoniae waa gene cluster, involved in core lipopolysaccharide biosynthesis. J Bacteriol 183, 3564–3573.[CrossRef]
    [Google Scholar]
  38. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. & Puhler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  40. Staskawicz, B., Dahlbeck, D., Keen, N. & Napoli, C. ( 1987; ). Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169, 5789–5794.
    [Google Scholar]
  41. Tang, J.-L., Gough, C. L. & Daniels, M. J. ( 1990; ). Cloning of genes involved in negative regulation of production of extracellular enzymes and polysaccharide of Xanthomonas campestris pathovar campestris. Mol Gen Genet 222, 157–160.
    [Google Scholar]
  42. Tang, J.-L., Liu, Y.-N., Barber, C. E., Dow, J. M., Wootton, J. C. & Daniels, M. J. ( 1991; ). Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Mol Gen Genet 226, 409–417.
    [Google Scholar]
  43. Tao, J., Feng, L., Guo, H., Li, Y. & Wang, L. ( 2004; ). The O-antigen gene cluster of Shigella boydii O11 and functional identification of its wzy gene. FEMS Microbiol Lett 234, 125–132.[CrossRef]
    [Google Scholar]
  44. Turner, P., Barber, C. & Daniels, M. J. ( 1984; ). Behavior of the transposons Tn5 and Tn7 in Xanthomonas campestris pv. campestris. Mol Gen Genet 195, 101–107.[CrossRef]
    [Google Scholar]
  45. Vanderslice, R. W., Doherty, D. H., Capage, M. A., Betlach, M. R., Hassler, R. A., Henderson, N. M., Ryan-Graniero, J. & Tecklenburg, M. ( 1990; ). Genetic engineering of polysaccharide structure in Xanthomonas campestris. In Biomedical and Biotechnological Advances in Industrial Polysaccharides, pp. 145–156. Edited by V. Crescenzi, I. C. M. Dea, S. Paoletti, S. S. Stivala & I. W. Sutherland. New York: Gordon & Breach.
  46. Vojnov, A. A., Slater, H., Daniels, M. J. & Dow, J. M. ( 2001; ). Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol Plant Microbe Interact 14, 768–774.[CrossRef]
    [Google Scholar]
  47. Windgassen, M., Urban, A. & Jaeger, K. E. ( 2000; ). Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol Lett 193, 201–205.[CrossRef]
    [Google Scholar]
  48. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
  49. Yun, M. H., Torres, P. S., El Oirdi, M., Rigano, L. A., Gonzalez-Lamothe, R., Marano, M. R., Castagnaro, A. P., Dankert, M. A., Bouarab, K. & Vojnov, A. A. ( 2006; ). Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol 141, 178–187.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001388-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001388-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error