1887

Abstract

Biomining, the use of micro-organisms to recover precious and base metals from mineral ores and concentrates, has developed into a successful and expanding area of biotechnology. While careful considerations are made in the design and engineering of biomining operations, microbiological aspects have been subjected to far less scrutiny and control. Biomining processes employ microbial consortia that are dominated by acidophilic, autotrophic iron- or sulfur-oxidizing prokaryotes. Mineral biooxidation takes place in highly aerated, continuous-flow, stirred-tank reactors or in irrigated dump or heap reactors, both of which provide an open, non-sterile environment. Continuous-flow, stirred tanks are characterized by homogeneous and constant growth conditions where the selection is for rapid growth, and consequently tank consortia tend to be dominated by two or three species of micro-organisms. In contrast, heap reactors provide highly heterogeneous growth environments that change with the age of the heap, and these tend to be colonized by a much greater variety of micro-organisms. Heap micro-organisms grow as biofilms that are not subject to washout and the major challenge is to provide sufficient biodiversity for optimum performance throughout the life of a heap. This review discusses theoretical and pragmatic aspects of assembling microbial consortia to process different mineral ores and concentrates, and the challenges for using constructed consortia in non-sterile industrial-scale operations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001206-0
2007-02-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/315.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001206-0&mimeType=html&fmt=ahah

References

  1. Battaglia-Brunet, F., Clarens, M., d'Hugues, P., Godon, J. J., Foucher, S. & Morin, D. ( 2002; ). Monitoring of a pyrite-oxidising bacterial population using DNA single strand conformation polymorphism and microscopic techniques. Appl Microbiol Biotechnol 60, 206–211.[CrossRef]
    [Google Scholar]
  2. Battaglia-Brunet, F., Joulian, C., Garrido, F., Dictor, M.-C., Morin, D., Coupland, K., Johnson, D. B., Hallberg, K. B. & Baranger, P. ( 2006; ). Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie van Leeuwenhoek 89, 99–108.[CrossRef]
    [Google Scholar]
  3. Bruhn, D. F., Thompson, D. N. & Naoh, K. S. ( 1999; ). Microbial ecology assessment of a mixed copper oxide/sulfide dump leach operation. In Biohydrometallurgy and the Environment. Toward the Mining of the 21st Century, Process Metallurgy 9A, pp. 799–808. Edited by R. Amils & A. Ballester. Amsterdam: Elsevier.
  4. Clark, D. A. & Norris, P. R. ( 1996; ). Acidimicrobium ferrooxidans gen. nov., sp. nov. mixed culture ferrous iron oxidation with Sulfobacillus species. Microbiology 141, 785–790.
    [Google Scholar]
  5. Coram, N. J. & Rawlings, D. E. ( 2002; ). Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 °C. Appl Environ Microbiol 68, 838–845.[CrossRef]
    [Google Scholar]
  6. Demergasso, C. S., Galeguillos, P. A., Escudero, L. V., Zepeda, V. J., Castillo, D. & Casamayor, E. O. ( 2005; ). Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy 80, 241–253.[CrossRef]
    [Google Scholar]
  7. Dew, D. W., Lawson, E. N. & Broadhurst, J. L. ( 1997; ). The BIOX® process for biooxidation of gold-bearing ores or concentrates. In Biomining: Theory, Microbes and Industrial Processes, pp. 45–80. Edited by D. E. Rawlings. Georgetown, TX: Springer/Landes Bioscience.
  8. d'Hugues, P., Battaglia-Brunet, F., Clarens, M. & Morin, D. ( 2003; ). Microbial diversity of various metal-sulphides bioleaching cultures grown under different operating conditions using 16S-rDNA analysis. In Biohydrometallurgy; a Sustainable Technology in Evolution, pp. 1323–1334. Edited by M. Tsezos, A. Hatzikioseyian & E. Remoudaki. Zografou, Greece: National Technical University of Athens.
  9. Dopson, M. & Lindström, E. B. ( 2004; ). Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite. Microb Ecol 48, 19–28.[CrossRef]
    [Google Scholar]
  10. Edwards, K. J., Hu, B., Hamers, R. J. & Banfield, J. F. ( 2001; ). A new look at microbiological leaching patterns on sulfide minerals. FEMS Microbiol Ecol 34, 197–206.[CrossRef]
    [Google Scholar]
  11. Goebel, B. M. & Stackebrandt, E. ( 1994; ). Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60, 1614–1621.
    [Google Scholar]
  12. Golyshina, O. V., Pivovarova, T. A., Karavaiko, G. I., Kondrat'eva, T. F., Moore, E. R. B., Abraham, W. R., Lunsdorf, H., Timmis, K. N., Yakimov, M. M. & Golyshin, P. N. ( 2000; ). Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50, 997–1006.[CrossRef]
    [Google Scholar]
  13. Hallberg, K. B. & Johnson, D. B. ( 2001; ). Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49, 37–84.
    [Google Scholar]
  14. Hallberg, K. B. & Lindström, E. B. ( 1994; ). Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140, 3451–3456.[CrossRef]
    [Google Scholar]
  15. Hallberg, K. B., Johnson, D. B. & Williams, P. A. ( 1999; ). A novel metabolic phenotype among acidophilic bacteria: aromatic degradation and the potential use of these microorganisms for the treatment of wastewater containing organic and inorganic pollutants. In Biohydrometallurgy and the Environment. Toward the Mining of the 21st Century, Process Metallurgy 9A, pp. 719–728. Edited by R. Amils & A. Ballester. Amsterdam: Elsevier.
  16. Hallberg, K. B., Coupland, K., Kimura, S. & Johnson, D. B. ( 2006; ). Macroscopic “acid streamer” growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72, 2022–2030.[CrossRef]
    [Google Scholar]
  17. Harvey, T. J. & Bath, M. ( 2007; ). The GeoBiotics GEOCOAT technology – progress and challenges. In Biomining, pp. 113–138. Edited by D. E. Rawlings & D. B. Johnson. Heidelberg: Springer.
  18. Hawkes, R. B., Franzmann, P. D. & Plumb, J. J. ( 2006; ). Moderate thermophiles including “Ferroplasma cyprexacervatum” sp. nov., dominate an industrial scale chalcocite heap bioleaching operation. Hydrometallurgy 83, 229–236.[CrossRef]
    [Google Scholar]
  19. Johnson, D. B. & Roberto, F. F. ( 1997; ). Heterotrophic acidophiles and their roles in the bioleaching of sulfide minerals. In Biomining: Theory, Microbes and Industrial Processes, pp. 259–280. Edited by D. E. Rawlings. Georgetown, TX: Springer/Landes Bioscience.
  20. Johnson, D. B., Rolfe, S., Hallberg, K. B. & Iversen, E. ( 2001a; ). Isolation and phylogenetic characterisation of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ Microbiol 3, 630–637.[CrossRef]
    [Google Scholar]
  21. Johnson, D. B., Bacelar-Nicolau, P., Okibe, N., Yahya, A. & Hallberg, K. B. ( 2001b; ). Role of pure and mixed cultures of Gram-positive eubacteria in mineral leaching. In Biohydrometallurgy: Fundamentals, Technology and Sustainable Development, Process Metallurgy 11A, pp. 461–470. Edited by V. S. T. Ciminelli & O. Garcia, Jr. Amsterdam: Elsevier.
  22. Johnson, D. B., Okibe, N. & Roberto, F. F. ( 2003; ). Novel thermo-acidophiles isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch Microbiol 180, 60–68.[CrossRef]
    [Google Scholar]
  23. Johnson, D. B., Okibe, N. & Hallberg, K. B. ( 2005; ). Differentiation and identification of iron-oxidizing acidophilic bacteria using cultivation techniques and amplified ribosomal DNA restriction enzyme analysis (ARDREA). J Microbiol Methods 60, 299–313.[CrossRef]
    [Google Scholar]
  24. Johnson, D. B., Stallwood, B., Kimura, S. & Hallberg, K. B. ( 2006; ). Characteristics of Acidicaldus organovorus, gen. nov., sp. nov.; a novel thermo-acidophilic heterotrophic proteobacterium. Arch Microbiol 185, 212–221.[CrossRef]
    [Google Scholar]
  25. Kinnunen, H.-M. & Puhakka, J. A. ( 2004; ). High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retainment in a fluidized-bed reactor. Biotechnol Bioeng 85, 697–705.[CrossRef]
    [Google Scholar]
  26. Logan, T. C., Seal, T. & Brierley, J. A. ( 2007; ). Whole-ore heap biooxidation of sulfidic gold-bearing ores. In Biomining, pp. 113–138. Edited by D. E. Rawlings & D. B. Johnson. Heidelberg: Springer.
  27. Marsh, R. M. & Norris, P. R. ( 1983; ). The isolation of some thermophilic, autotrophic, iron- and sulphur-oxidizing bacteria. FEMS Microbiol Lett 17, 311–315.[CrossRef]
    [Google Scholar]
  28. Mikkelsen, D., Kappler, U., McEwan, A. G. & Sly, L. I. ( 2006; ). Archaeal diversity in two thermophilic chalcopyrite bioleaching reactors. Environ Microbiol 8, 2050–2055.[CrossRef]
    [Google Scholar]
  29. Norris, P. R., Clark, D. A., Owen, J. P. & Waterhouse, S. ( 1996; ). Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 141, 775–783.
    [Google Scholar]
  30. Norris, P. R., Burton, N. P. & Foulis, N. A. M. ( 2000; ). Acidophiles in bioreactor mineral processing. Extremophiles 4, 71–76.[CrossRef]
    [Google Scholar]
  31. Okibe, N. & Johnson, D. B. ( 2004; ). Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: the significance of microbial interactions. Biotechnol Bioeng 87, 574–583.[CrossRef]
    [Google Scholar]
  32. Okibe, N., Gericke, M., Hallberg, K. B. & Johnson, D. B. ( 2003; ). Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred tank bioleaching operation. Appl Environ Microbiol 69, 1936–1943.[CrossRef]
    [Google Scholar]
  33. Plumb, J. J., Hawkes, R. B. & Franzman, P. D. ( 2006; ). The microbiology of moderately thermophilic and transiently thermophilic ore heaps. In Biomining, pp. 217–235. Edited by D. E. Rawlings & D. B. Johnson. Berlin: Springer.
  34. Rawlings, D. E. ( 2005; ). Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4, 13. http://www.microbialcellfactories.com/content/4/1/13 [CrossRef]
    [Google Scholar]
  35. Rawlings, D. E. & Johnson, D. B. (editors) ( 2007; ). Biomining. Heidelberg: Springer.
  36. Rawlings, D. E. & Silver, S. ( 1995; ). Mining with microbes. Bio/Technology 13, 773–779.[CrossRef]
    [Google Scholar]
  37. Rawlings, D. E., Dew, D. & du Plessis, C. ( 2003; ). Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21, 38–44.[CrossRef]
    [Google Scholar]
  38. Rodriguez-Leiva, M. & Tributsch, H. ( 1988; ). Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on pyrite. Arch Microbiol 149, 401–405.[CrossRef]
    [Google Scholar]
  39. Sand, W. & Gehrke, T. ( 2006; ). Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157, 49–56.[CrossRef]
    [Google Scholar]
  40. Sand, W., Gehrke, T., Hallmann, R. & Schippers, A. ( 1995; ). Sulfur chemistry, biofilm, and the (in)direct attack mechanism – critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43, 961–966.[CrossRef]
    [Google Scholar]
  41. Stott, M. B., Watling, H. R., Franzmann, P. D. & Sutton, D. C. ( 2000; ). The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching. Miner Eng 13, 1117–1127.[CrossRef]
    [Google Scholar]
  42. Temple, K. L. & Colmer, A. R. ( 1951; ). The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. J Bacteriol 62, 605–611.
    [Google Scholar]
  43. Tourova, T. P., Poltoraus, A. B., Lebedeva, I. A., Tsaplina, I. A., Bogdanova, T. I. & Karavaiko, G. I. ( 1994; ). 16S ribosomal RNA (rDNA) sequence analysis and phylogenetic position of Sulfobacillus thermosulfidooxidans. Syst Appl Microbiol 17, 509–512.
    [Google Scholar]
  44. Tuffin, I. M., de Groot, P., Deane, S. M. & Rawlings, D. E. ( 2005; ). An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus. Microbiology 151, 3027–3039.[CrossRef]
    [Google Scholar]
  45. Tuffin, I. M., Hector, S. B., Deane, S. M. & Rawlings, D. E. ( 2006; ). The resistance determinants of a highly arsenic resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Appl Environ Microbiol 72, 2247–2253.[CrossRef]
    [Google Scholar]
  46. van Aswegen, P. C., van Niekerk, J. & Olivier, W. ( 2007; ). The BIOX™ process for the treatment of refractory gold concentrates. In Biomining, pp. 1–34. Edited by D. E. Rawlings & D. B. Johnson. Heidelberg: Springer.
  47. Waksman, S. A. & Joffe, J. S. ( 1921; ). Acid production by a new sulfur-oxidizing bacterium. Science 53, 216.[CrossRef]
    [Google Scholar]
  48. Yahya, A. & Johnson, D. B. ( 2002; ). Bioleaching of pyrite at low pH and low redox potentials by novel mesophilic Gram-positive bacteria. Hydrometallurgy 63, 181–188.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001206-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001206-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error