1887

Abstract

The development of molecular taxonomic methods has provided a large amount of data in the reorganization of taxonomy. Nevertheless, phylogenetic relationships among some groups and species delimitation remain unclear. To clarify rickettsial phylogeny, a multigenic approach was used for the first time for the genus , based on simultaneous analyses of eight loci: , , , , , internal transcribed spacer, and . Concatenation of different nucleotide sequences resulted in an improvement in phylogenetic resolution when compared to single gene data. This multigenic approach has enabled the differentiation of many groups, including the spotted fever group which includes a great number of closely related species. The reliability of some previously recognized groups was evaluated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001149-0
2007-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/160.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001149-0&mimeType=html&fmt=ahah

References

  1. Aanensen D. M., Spratt B. G. 2005; The multilocus sequence typing network: mlst.net. Nucleic Acids Res 33: Web Server issue W728–W733 [CrossRef]
    [Google Scholar]
  2. Andersson S. G. E., Zomorodipour A., Andersson J. O., Alsmark U. C. M., Podowski R. M., Eriksson A.-S., Winkler H. H., Kurland C. G, Sicheritz-Pontén T., Näslund A. K. 1998; The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140 [CrossRef]
    [Google Scholar]
  3. Bull J. J., Huelsenbeck J. P., Cunningham C. W., Swofford D. L., Waddell P. J. 2003; Partitioning and combining data in phylogenetic analysis. Syst Biol 42:384–397
    [Google Scholar]
  4. Castoe T. A., Doan T. M., Parkinson C. L. 2004; Data partitions and complex models in Bayesian analysis: the phylogeny of gymnophthalmid lizards. Syst Biol 53:448–469 [CrossRef]
    [Google Scholar]
  5. Cooper J. E., Feil E. J. 2004; Multilocus sequence typing – what is resolved?. Trends Microbiol 12:373–377 [CrossRef]
    [Google Scholar]
  6. Cummings M. P., Otto S. P., Wakeley J. 1995; Sampling properties of DNA sequence data in phylogenetic analysis. Mol Biol Evol 12:814–822
    [Google Scholar]
  7. Cunningham C. W. 1997; Can three incongruence tests predict when data should be combined?. Mol Biol Evol 14:733–740 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1989; phylip – Phylogeny Inference Package (Version 3.2. Cladistics 5:164–166
    [Google Scholar]
  9. Fournier P. E., Roux V., Raoult D. 1998; Phylogenetic analysis of the spotted fever Rickettsiae by study of the outer surface protein rOmpA. Int J Syst Bacteriol 48:839–849 [CrossRef]
    [Google Scholar]
  10. Fournier P. E., Dumler J. S., Greub G., Zhang J., Wu Y., Raoult D. 2003; Gene sequence-based criteria for identification of new Rickettsia isolates and description of Rickettsia heilongjiangensis sp. nov. J Clin Microb 41:5456–5465 [CrossRef]
    [Google Scholar]
  11. Gimenez D. F. 1964; Staining Rickettsiae in yolk-sac cultures. Stain Technol 39:135–140
    [Google Scholar]
  12. Goldman N., Anderson J. P., Rodrigo A. G. 2000; Likelihood-based tests of topologies in phylogenetics. Syst Biol 49:652–670 [CrossRef]
    [Google Scholar]
  13. Hall B. G. 2004 Phylogenetic Trees Made Easy: a How-To Manual for Molecular Biologists , 2nd edn. Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  14. Hasegawa M., Kishino H., Yano T. 1985; Dating the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174 [CrossRef]
    [Google Scholar]
  15. Huelsenbeck J. P., Ronquist F. R. 2001; MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 [CrossRef]
    [Google Scholar]
  16. Huelsenbeck J. P., Ronquist F., Nielsen R., Bollback J. P. 2001; Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314 [CrossRef]
    [Google Scholar]
  17. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for Molecular Evolutionary Genetic Analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  18. Lanave C., Preparata G., Saccone C., Serio G. 1984; A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93 [CrossRef]
    [Google Scholar]
  19. Nei M., Gojobori T. 1986; Simple methods for estimating the number of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426
    [Google Scholar]
  20. Ngwamidiba M., Blanc G., Raoult D., Fournier P.-E. 2006; ScaI, a previously undescribed paralog from autotransporter protein-encoding genes in Rickettsia species. BMC Microbiol 20:6–12
    [Google Scholar]
  21. Ogata H., Audic S., Renesto-Audiffren P., Fournier P.-E., Barbe V., Samson D., Roux V., Cossart P., Weissenbach J. other authors 2001; Mechanisms of evolution in Rickettsia conorii and R. prowazekii . Science 293:2093–2098 [CrossRef]
    [Google Scholar]
  22. Ogata H., Renesto P., Audic S., Robert C., Blanc G., Fournier P. E., Parinello H., Claverie J. M., Raoult D. 2005; The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol 3:e248 [CrossRef]
    [Google Scholar]
  23. Ogata H., La Scola B., Audic S., Renesto P., Blanc G., Robert C., Fournier P. E., Claverie J. M., Raoult D. 2006; Genome sequence of Rickettsia bellii illuminates the role of Amoebae in gene exchanges between intracellular pathogens. PLoS Genetics 2:733–744
    [Google Scholar]
  24. Philip R. N., Casper E. A., Anacker R. L., Cory J., Hayes S. F., Burgdorfer W., Yunker C. E. 1983; Rickettsia bellii sp. nov., a tick-borne rickettsia, widely distributed in the United States, that is distinct from the spotted fever and typhus biogroups. Int J Syst Bacteriol 33:94–106 [CrossRef]
    [Google Scholar]
  25. Parola P., Paddock C. D., Raoult D. 2005; Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev 18:719–756 [CrossRef]
    [Google Scholar]
  26. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  27. Raoult D., Roux V. 1997; Rickettsioses as paradigms of new or emerging infectious diseases. Clin Microbiol Rev 10:694–719
    [Google Scholar]
  28. Regnery R. L., Spruill C. L., Plikaytis B. D. 1991; Genotypic identification of Rickettsiae and estimation of interspecies sequence divergence for portions of two rickettsial genes. J Bacteriol 173:1576–1589
    [Google Scholar]
  29. Roux V., Raoult D. 1995; Phylogenetic analysis of the genus Rickettsia by 16S rDNA sequencing. Res Microbiol 146:385–396 [CrossRef]
    [Google Scholar]
  30. Roux V., Raoult D. 2000; Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB ( ompB . Int J Syst Evol Microbiol 50:1449–1455 [CrossRef]
    [Google Scholar]
  31. Roux V., Rydkina E., Eremeeva M., Raoult D. 1997; Citrate synthase gene comparison, a new tool for phylogenetic analysis and its application for the Rickettsiae. Int J Syst Bacteriol 47:252–262 [CrossRef]
    [Google Scholar]
  32. Sekeyova Z., Roux V., Raoult D. 2001; Phylogeny of Rickettsia spp. inferred by comparing sequences of ‘gene D’. which encodes an intracytoplasmic protein. Int J Syst Evol Microbiol 51:1353–1360
    [Google Scholar]
  33. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  34. Stothard D. R., Clark J. B., Fuerst P. A. 1994; Ancestral divergence of Rickettsia bellii from the spotted fever and typhus groups of Rickettsia and antiquity of the genus Rickettsia . Int J Syst Bacteriol 44:798–804 [CrossRef]
    [Google Scholar]
  35. Swofford D. L. 2000 paup* – Phylogenetic Analysis Using Parsimony and other methods (software Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  36. Thompson J. D., Higgins D. G., Gibson T. J. 1997; The clustalx–Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  37. Vitorino L., Sousa A., Bacellar F., Tenreiro R, Zé-Zé L. 2003; rRNA intergenic spacer regions for phylogenetic analysis of Rickettsia species. Ann N Y Acad Sci 990:726–733 [CrossRef]
    [Google Scholar]
  38. Weiss E., Dasch G. A. 1991; Introduction to the Rickettsiales and other parasitic or mutualistic prokaryotes. In The Prokaryotes , 2nd edn. pp 2402–2406 Edited by Balows A., Dworking M., Harder W., Schleifer K.-H., Trüper H. G. New York: Springer;
    [Google Scholar]
  39. Zhu Y., Fournier P.-E., Eremeeva M., Raoult D. 2005; Proposal to create subspecies of Rickettsia conorii based on multi-locus sequence typing and an emended description of Rickettsia conorii . BMC Microbiol 5:11 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001149-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001149-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error