1887

Abstract

is a saccharolytic Gram-negative anaerobic organism believed to play an important role in the microbial succession associated with the development of periodontal disease. Its genome contains niche-specific genes shared with the other inhabitants of dental plaque, which may help to explain its ability to survive and grow in the changing environmental conditions experienced in the gingival sulcus during the transition from health to disease. The pH of the gingival sulcus increases during the development of periodontitis and this is thought to occur by the metabolism of nutrients supplied by gingival crevicular fluid. In comparison with other plaque inhabitants, has the greatest ability to neutralize acidic environments. The differential expression of soluble cytoplasmic proteins induced by acidic (pH 6.4) or basic (pH 7.4 and 7.8) conditions, during long-term anaerobic growth in a chemostat, was identified by two-dimensional gel electrophoresis and image analysis software. Twenty-two proteins, found to have altered expression in response to external pH, were identified by tryptic digestion and mass spectrometry. Eight differentially expressed proteins associated with increased energy (ATP) production via the 2-oxoglutarate and Embden–Meyerhof pathways appeared to be directed towards either cellular biosynthesis or the maintenance of internal homeostasis. Overall, these results represent the first proteomic investigation of and the identification of gene products which may be important in the organism's persistence during the transition from health to disease .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001040-0
2007-01-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/148.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001040-0&mimeType=html&fmt=ahah

References

  1. Bickel, M. & Cimasoni, G. ( 1985; ). The pH of human crevicular fluid measured by a new microanalytical technique. J Periodont Res 20, 35–40.[CrossRef]
    [Google Scholar]
  2. Brook, I. ( 2002; ). Cutaneous and subcutaneous infections in newborns due to anaerobic bacteria. J Perinat Med 30, 197–208.
    [Google Scholar]
  3. Campostrini, N., Areces, L. B., Rappsilber, J., Pietrogrande, M. C., Dondi, F., Pastorino, F., Ponzoni, M. & Righetti, G. ( 2005; ). Spot overlapping in two-dimensional maps: a serious problem ignored for much too long. Proteomics 5, 2385–2395.[CrossRef]
    [Google Scholar]
  4. Diaz, P. I., Zilm, P. S. & Rogers, A. H. ( 2002; ). Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbon dioxide-depleted environments. Microbiology 148, 467–472.
    [Google Scholar]
  5. Dzink, J. L., Sheenan, M. T. & Socransky, S. S. ( 1990; ). Proposal of three subspecies of Fusobacterium nucleatum Knorr 1922: Fusobacterium nucleatum subsp. nucleatum subsp. nov., comb. nov.; Fusobacterium nucleatum subsp. polymorphum subsp. nov., nom. rev., comb. nov.; and Fusobacterium nucleatum subsp. vincentii subsp. nov., nom. rev., comb. nov. Int J Syst Bacteriol 40, 74–78.[CrossRef]
    [Google Scholar]
  6. Edwards, M., Grossman, T. J. & Rudney, J. D. ( 2006; ). Fusobacterium nucleatum transports non-invasive Streptococcus cristatus into human epithelial cells. Infect Immun 74, 654–662.[CrossRef]
    [Google Scholar]
  7. Fozo, E. M. & Quivey, R. G., Jr ( 2004; ). The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol 186, 4152–4158.[CrossRef]
    [Google Scholar]
  8. Genco, C. A. ( 1995; ). Regulation of hemin and iron transport in Porphyromonas gingivalis. Adv Dent Res 9, 41–47.[CrossRef]
    [Google Scholar]
  9. Goulhen, F., Greiner, D. & Mayrand, D. ( 2003; ). Oral microbial heat-shock proteins and their potential contributions to infections. Crit Rev Oral Biol Med 14, 399–412.[CrossRef]
    [Google Scholar]
  10. Görg, A. & Weiss, W. ( 1998; ). In Cell Biology. A Laboratory Handbook, vol. 4, 2nd edn, pp. 386–297. Edited by J. E. Celis. New York: Academic Press.
  11. Haffajee, A. D. & Socransky, S. S. ( 1994; ). Microbial etiological agents of destructive periodontal diseases. Periodontol 2000 5, 78–111.[CrossRef]
    [Google Scholar]
  12. Haffajee, A. D. & Socransky, S. S. ( 2005; ). Microbiology of periodontal diseases: introduction. Periodontol 2000 38, 9–12.[CrossRef]
    [Google Scholar]
  13. Haffajee, A. D. & Socransky, S. S. ( 2006; ). Introduction to microbial aspects of periodontal biofilm communities, development and treatment. Periodontol 2000 42, 7–12.[CrossRef]
    [Google Scholar]
  14. Hamilton, I. R., Phipps, P. J. & Ellwood, D. C. ( 1979; ). Effect of growth rate and glucose concentration on the biochemical properties of Streptococcus mutans Ingbritt in continuous culture. Infect Immun 26, 861–869.
    [Google Scholar]
  15. Han, Y. W., Shi, W., Huang, G. T., Kinder Haake, S., Park, N. H., Kuramitsu, H. & Genco, R. J. ( 2000; ). Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect Immun 68, 3140–3146.[CrossRef]
    [Google Scholar]
  16. van der Hoeven, J. S., de Jong, M. H., Camp, P. J. M. & van der Kieboom, C. W. A. ( 1985; ). Competition between oral Streptococcus species in the chemostat under alternating conditions of glucose limitation and excess. FEMS Microbiol Ecol 31, 373–379.
    [Google Scholar]
  17. Holt, S. C. & Ebersole, J. L. ( 2005; ). Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia: the ‘red complex’, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 38, 75–122.
    [Google Scholar]
  18. Hoskinsson, P. A. & Hobbs, G. ( 2005; ). Continuous culture – making a comeback? Microbiology 151, 3153–3159.[CrossRef]
    [Google Scholar]
  19. Hyatt, A. T. & Hayes, M. L. ( 1975; ). Free amino acids and amines in human dental plaque. Arch Oral Biol 20, 203–209.[CrossRef]
    [Google Scholar]
  20. Kapatral, V., Anderson, I., Ivanova, N. & 23 other authors ( 2002; ). Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain 25586. J Bacteriol 184, 2005–2018.[CrossRef]
    [Google Scholar]
  21. Kapatral, V., Ivanova, N., Anderson, I. & 11 other authors ( 2003; ). Genome analysis of F. nucleatum subsp. vincentii and its comparison with the genome of F. nucleatum ATCC 25586. Genome Res 13, 1180–1189.[CrossRef]
    [Google Scholar]
  22. Kolenbrander, P. E. & London, J. ( 1993; ). Adhere today, here tomorrow: oral bacteria adherence. J Bacteriol 175, 3247–3252.
    [Google Scholar]
  23. Kung, R. T. V., Ochs, B. & Goodson, M. ( 1990; ). Temperature as a periodontal diagnostic. J Clin Periodontal 17, 557–563.[CrossRef]
    [Google Scholar]
  24. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  25. Marsh, P. D. ( 1991; ). Sugar, fluoride, pH and microbial homeostasis in dental plaque. Proc Finn Dent Soc 87, 515–525.
    [Google Scholar]
  26. Marsh, P. D. ( 1994; ). Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8, 263–271.
    [Google Scholar]
  27. Mikasaki, K. ( 2006; ). Periodontics Information Centre. Periodontal Immunology [Online: http://www.dent.ucla.edu/pic/members/immunology/immunology2.html]. Accessed 6 February, 2006.
  28. Robrish, S. A. & Thompson, J. ( 1990; ). Regulation of fructose metabolism and polymer synthesis by Fusobacterium nucleatum ATCC10953. J Bacteriol 172, 5714–5723.
    [Google Scholar]
  29. Robrish, S. A., Oliver, C. & Thompson, J. ( 1987; ). Amino acid-dependent transport of sugars by Fusobacterium nucleatum ATCC 10953. J Bacteriol 169, 3891–3897.
    [Google Scholar]
  30. Rogers, A. H., Zilm, P. S., Gully, N. J., Pfennig, A. L. & Marsh, P. D. ( 1991; ). Aspects of the growth and metabolism of Fusobacterium nucleatum ATCC 10953 in continuous culture. Oral Microbiol Immunol 6, 250–255.[CrossRef]
    [Google Scholar]
  31. Shaniztki, B., Hurwitz, D., Smorodinsky, N., Ganaeshkumar, N. & Weiss, E. I. ( 1997; ). The identification of a Fusobacterium nucleatum PK1594 galactose binding adhesion which mediates coaggregation with periodontopathic bacteria and hemagglutination. Infect Immun 65, 5231–5237.
    [Google Scholar]
  32. Sherman, M. Yu. & Goldberg, A. L. ( 1992; ). Heat shock in Escherichia coli alters the protein-binding properties of the chaperonin GroEL by inducing its phosphorylation. Nature 357, 167–169.[CrossRef]
    [Google Scholar]
  33. Singer, D. L. & Kleinberg, I. ( 1983; ). The free amino acids inhuman dental plaque. Arch Oral Biol 28, 873–878.[CrossRef]
    [Google Scholar]
  34. Skår, C. K., Kruger, P. G. & Bakken, V. ( 2003; ). Characterisation and subcellular localization of the GroEL-like and DnaK-like proteins isolated from Fusobacterium nucleatum ATCC 10953. Anaerobe 9, 305–312.[CrossRef]
    [Google Scholar]
  35. Slots, J. ( 2005; ). Herpesviruses in periodontal diseases. Periodontol 2000 38, 33–62.[CrossRef]
    [Google Scholar]
  36. Socransky, S. S. & Haffajee, A. D. ( 2005; ). Periodontal microbial ecology. Periodontol 2000 38, 135–187.[CrossRef]
    [Google Scholar]
  37. Socransky, S. S., Manganielli, A. D., Propas, D., Orum, U. & van Houte, J. ( 1977; ). Bacteriological studies of developing supragingival dental plaque. J Periodont Res 12, 90–106.[CrossRef]
    [Google Scholar]
  38. Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C. & Kent, R. L., Jr ( 1998; ). Microbial complexes in subgingival plaque. J Clin Periodontol 25, 134–144.[CrossRef]
    [Google Scholar]
  39. Takahashi, N. ( 2003; ). Acid-neutralizing activity during amino acid fermentation by Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Oral Microbiol Immunol 18, 109–113.[CrossRef]
    [Google Scholar]
  40. Takahashi, N. ( 2005; ). Microbial ecosystem in the oral cavity: metabolic diversity in an ecological niche and its relationship with oral diseases. Int Congr Ser 1284, 103–112.[CrossRef]
    [Google Scholar]
  41. Wilkins, J. C., Homer, K. A. & Beighton, D. ( 2001; ). Altered protein expression of Streptococcus oralis cultured at low pH revealed by two-dimensional gel electrophoresis. Appl Environ Microbiol 67, 3396–3405.[CrossRef]
    [Google Scholar]
  42. Wilkins, J. C., Homer, K. A. & Beighton, D. ( 2002; ). Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol 68, 2382–2390.[CrossRef]
    [Google Scholar]
  43. Wilkins, M. R., Appel, R. D., Van Eyk, J. E. & 13 other authors ( 2006; ). Guidelines for the next 10 years of proteomics. Proteomics 6, 4–8.
    [Google Scholar]
  44. Zilm, P. S., Gully, N. J. & Rogers, A. H. ( 2002; ). Growth pH and transient increases in amino acid availability influence polyglucose synthesis by Fusobacterium nucleatum. FEMS Microbiol Lett 215, 203–208.[CrossRef]
    [Google Scholar]
  45. Zilm, P. S., Gully, N. J. & Rogers, A. H. ( 2003; ). Changes in growth and polyglucose synthesis in response to fructose metabolism by Fusobacterium nucleatum grown in continuous culture. Oral Microbiol Immunol 18, 260–262.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001040-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001040-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error