1887

Abstract

The activity of glycogen-accumulating organisms (GAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment plants has been proposed as one cause of deterioration of EBPR. Putative GAOs from the , spp. (including ), were studied in full-scale EBPR plants to determine their distribution, abundance and ecophysiology. Fluorescence hybridization (FISH) demonstrated that spp. were generally low in abundance; however, in one plant surveyed, Cluster 2 constituted 9 % of all . FISH combined with microautoradiography revealed that both Cluster 1 and Cluster 2 were capable of taking up a narrow range of substrates including acetate, propionate, pyruvate and glucose under anaerobic and aerobic conditions. Formate, butyrate, ethanol and several other substrates were not taken up. Cluster 2 demonstrated a phenotype consistent with the current metabolic model for GAOs – anaerobic assimilation of acetate and reduction to polyhydroxyalkanoates (PHA) using the glycolytic pathway, and aerobic consumption of PHA. Polyphosphate-accumulating organisms (PAOs, ‘ Accumulibacter phosphatis’) and other putative GAOs (‘ Competibacter phosphatis’) co-existed in two plants with Cluster 2 , but in both plants, the latter organisms were more abundant. Thus Cluster 2 can be relatively abundant and could be carbon competitors of PAOs and other GAOs in EBPR plants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001032-0
2007-01-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/178.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001032-0&mimeType=html&fmt=ahah

References

  1. Amann, R. I. ( 1995; ). In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual, pp. 1–15. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruijn. London: Kluwer.
  2. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S ribosomal RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925.
    [Google Scholar]
  3. Beer, M., Kong, Y. H. & Seviour, R. J. ( 2004; ). Are some putative glycogen accumulating organisms (GAO) in anaerobic : aerobic activated sludge systems members of the α-Proteobacteria? Microbiology 150, 2267–2275.[CrossRef]
    [Google Scholar]
  4. Bickis, I. J. & Quastel, J. H. ( 1965; ). Effects of metabolic inhibitors on energy metabolism of Ehrlich ascites carcinoma cells. Nature 205, 44–46.[CrossRef]
    [Google Scholar]
  5. Blackall, L. L., Crocetti, G. R., Saunders, A. M. & Bond, P. L. ( 2002; ). A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants. Antonie Van Leeuwenhoek 81, 681–691.[CrossRef]
    [Google Scholar]
  6. Bond, P. L., Erhart, R., Wagner, M., Keller, J. & Blackall, L. L. ( 1999; ). Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl Environ Microbiol 65, 4077–4084.
    [Google Scholar]
  7. Crocetti, G. R., Hugenholtz, P., Bond, P. L., Schuler, A., Keller, J., Jenkins, D. & Blackall, L. L. ( 2000; ). Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66, 1175–1182.[CrossRef]
    [Google Scholar]
  8. Crocetti, G. R., Banfield, J. F., Keller, J., Bond, P. L. & Blackall, L. L. ( 2002; ). Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology 148, 3353–3364.
    [Google Scholar]
  9. Daims, H., Bruhl, A., Amann, R., Schleifer, K. H. & Wagner, M. ( 1999; ). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22, 434–444.[CrossRef]
    [Google Scholar]
  10. Filipe, C. D. M., Daigger, G. T. & Grady, C. P. L. ( 2001; ). A metabolic model for acetate uptake under anaerobic conditions by glycogen accumulating organisms: stoichiometry, kinetics, and the effect of pH. Biotechnol Bioeng 76, 17–31.[CrossRef]
    [Google Scholar]
  11. Kong, Y. H., Ong, S. L., Ng, W. J. & Liu, W. T. ( 2002; ). Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic-aerobic activated sludge processes. Environ Microbiol 4, 753–757.[CrossRef]
    [Google Scholar]
  12. Kong, Y. H., Nielsen, J. L. & Nielsen, P. H. ( 2004; ). Microautoradiographic study of Rhodocyclus-related polyphosphate accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 70, 5383–5390.[CrossRef]
    [Google Scholar]
  13. Kong, Y. H., Nielsen, J. L. & Nielsen, P. H. ( 2005; ). Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 71, 4076–4085.[CrossRef]
    [Google Scholar]
  14. Kong, Y. H., Xia, Y., Nielsen, J. L. & Nielsen, P. H. ( 2006; ). Ecophysiology of a group of uncultured gammaproteobacterial glycogen-accumulating organisms in full-scale enhanced biological phosphorus removal wastewater treatment plants. Environ Microbiol 8, 479–489.[CrossRef]
    [Google Scholar]
  15. Lee, N., Nielsen, P. H., Andreasen, K. H., Juretschko, S., Nielsen, J. L., Schleifer, K. H. & Wagner, M. ( 1999; ). Combination of fluorescent in situ hybridization and microautoradiography – a new tool for structure–function analyses in microbial ecology. Appl Environ Microbiol 65, 1289–1297.
    [Google Scholar]
  16. Lindrea, K. C., Seviour, E. M., Seviour, R. J., Blackall, L. L. & Soddell, J. A. ( 1999; ). Practical methods for the examination and characterization of activated sludge. In The Microbiology of Activated Sludge, pp. 257–300. Edited by R. J. Seviour & L. L. Blackall. Dordrecht: Kluwer.
  17. Liu, W. T., Mino, T., Nakamura, K. & Matsuo, T. ( 1996; ). Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal. Water Res 30, 75–82.[CrossRef]
    [Google Scholar]
  18. Lotspeich, W. D., Peters, R. A. & Wilson, T. H. ( 1952; ). The inhibition of aconitase by inhibitor fractions isolated from tissues poisoned with fluoroacetate. Biochem J 51, 20–25.
    [Google Scholar]
  19. Maszenan, A. M., Seviour, R. J., Patel, B. K. C., Janssen, P. H. & Wanner, J. ( 2005; ). Defluvicoccus vanus gen. nov., sp. nov., a novel Gram-negative coccus/coccobacillus in the ‘Alphaproteobacteria’ from activated sludge. Int J Syst Evol Microbiol 55, 2105–2111.[CrossRef]
    [Google Scholar]
  20. Meyer, R. L., Saunders, A. M. & Blackall, L. L. ( 2006; ). Putative glycogen-accumulating organisms belonging to the Alphaproteobacteria identified through rRNA-based stable isotope probing. Microbiology 152, 419–429.[CrossRef]
    [Google Scholar]
  21. Mino, T., Liu, W. T., Kurisu, F. & Matsuo, T. ( 1995; ). Modeling glycogen-storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Water Sci Technol 31, 25–34.
    [Google Scholar]
  22. Mino, T., Van Loosdrecht, M. C. M. & Heijnen, J. J. ( 1998; ). Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32, 3193–3207.[CrossRef]
    [Google Scholar]
  23. Nielsen, J. L., Christensen, D., Kloppenberg, M. & Nielsen, P. H. ( 2003; ). Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environ Microbiol 5, 202–211.[CrossRef]
    [Google Scholar]
  24. Oehmen, A., Yuan, Z. G., Blackall, L. L. & Keller, J. ( 2005; ). Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol Bioeng 91, 162–168.[CrossRef]
    [Google Scholar]
  25. Ostle, A. & Holt, J. G. ( 1982; ). Nile blue-A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44, 238–241.
    [Google Scholar]
  26. Satoh, H., Mino, T. & Matsuo, T. ( 1992; ). Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes. Water Sci Technol 26, 933–942.
    [Google Scholar]
  27. Saunders, A. M., Oehmen, A., Blackall, L. L., Yuan, Z. & Keller, J. ( 2003; ). The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants. Water Sci Technol 47, 37–43.
    [Google Scholar]
  28. Seviour, R. J., Maszenan, A. M., Soddell, J. A., Tandoi, V., Patel, B. K. C., Kong, Y. H. & Schumann, P. ( 2000; ). Microbiology of the ‘G-bacteria’ in activated sludge. Environ Microbiol 2, 581–593.[CrossRef]
    [Google Scholar]
  29. Seviour, R. J., Mino, T. & Onuki, M. ( 2003; ). The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27, 99–127.[CrossRef]
    [Google Scholar]
  30. van Loosdrecht, M. C. M., Smolders, G. J., Kuba, T. & Heijnen, J. J. ( 1997; ). Metabolism of micro-organisms responsible for enhanced biological phosphorus removal from wastewater – use of dynamic enrichment cultures. Antonie Van Leeuwenhoek 71, 109–116.[CrossRef]
    [Google Scholar]
  31. Wallner, G., Amann, R. & Biesker, W. ( 1993; ). Optimizing fluorescent in situ hybridisation with rRNA-targeted oligonucleotide probes for low cytometric identification of microorganisms. Cytometry 14, 136–143.[CrossRef]
    [Google Scholar]
  32. Wong, M.-T., Tan, F. M., Ng, W. J. & Liu, W. T. ( 2004; ). Identification and occurence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes. Microbiology 150, 3741–3748.[CrossRef]
    [Google Scholar]
  33. Wong, M. T., Mino, T., Seviour, R. J., Onuki, M. & Liu, W. T. ( 2005; ). In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Res 39, 2901–2914.[CrossRef]
    [Google Scholar]
  34. Zeng, R. J., Saunders, A. M., Yuan, Z. G., Blackall, L. L. & Keller, J. ( 2003a; ). Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms. Biotechnol Bioeng 83, 140–148.[CrossRef]
    [Google Scholar]
  35. Zeng, R. J., van Loosdrecht, M. C. M., Yuan, Z. G. & Keller, J. ( 2003b; ). Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems. Biotechnol Bioeng 81, 92–105.[CrossRef]
    [Google Scholar]
  36. Zeng, R. J., Yuan, Z. G. & Keller, J. ( 2003c; ). Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system. Biotechnol Bioeng 81, 397–404.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001032-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001032-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error