1887

Abstract

, and strains 103 and 203, can degrade polyethylene glycols (PEGs). They differ in the following respects: (i) different substrate specificities (chain length) of assimilable PEG, (ii) PEG-inducible or constitutive PEG-degradative proteins, and (iii) symbiotic or axenic degradation of PEG. was able to incorporate PEG 6000, but strain 103 could not incorporate more than PEG 4000, suggesting that the difference in assimilable PEG chain length depends on the ability to take up substrate. PEG-degradative genes (, , , , and ) from these strains were cloned. Their primary structures shared a high homology of more than 99 %. The genes encode a TonB-dependent receptor (), a PEG-aldehyde dehydrogenase (), a permease (), a PEG dehydrogenase () and an acyl-CoA ligase (), and in the opposite orientation, an AraC-type transcription regulator (). The operon was flanked by two different sets of transposases. These three strains contained large plasmids and the operon was located in one of the large plasmids in . The genes could be detected in other PEG-degrading sphingomonads. These results suggest that the genes have evolved in a plasmid-mediated manner. An insertion of a transposon gene () between and in strain 203 was found, which caused the constitutive expression of in this strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000992-0
2007-02-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/338.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000992-0&mimeType=html&fmt=ahah

References

  1. Basta, T., Keck, A., Klein, J. & Stolz, A. ( 2004; ). Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains. J Bacteriol 186, 3862–3872.[CrossRef]
    [Google Scholar]
  2. Basta, T., Buerger, S. & Stolz, A. ( 2005; ). Structural and replicative diversity of large plasmids from sphingomonads that degrade polycyclic aromatic compounds and xenobiotics. Microbiology 151, 2025–2037.[CrossRef]
    [Google Scholar]
  3. Charoenpanich, J., Tani, A., Moriwaki, N., Kimbara, K. & Kawai, F. ( 2006; ). Dual regulation of a polyethylene glycol-degradative operon by AraC-type and GalR-type regulators in Sphingopyxis macrogoltabida strain 103. Microbiology 152, 3025–3034.[CrossRef]
    [Google Scholar]
  4. Enokibara, S. & Kawai, F. ( 1997; ). Purification and characterization of an ether bond-cleaving enzyme involved in the metabolism of polyethylene glycol. J Ferment Bioeng 83, 549–554.[CrossRef]
    [Google Scholar]
  5. Ferguson, A. D. & Deisenhofer, J. ( 2002; ). TonB-dependent receptors – structural perspectives. Biochim Biophys Acta 1565, 318–332.[CrossRef]
    [Google Scholar]
  6. Hashimoto, W., He, J., Wada, Y., Nankai, H., Mikami, B. & Murata, K. ( 2005; ). Proteomics-based identification of outer-membrane proteins responsible for import of macromolecules in Sphingomonas sp. A1: alginate-binding flagellin on the cell surface. Biochemistry 44, 13783–13794.[CrossRef]
    [Google Scholar]
  7. Ka, J. O. & Tiedje, J. M. ( 1994; ). Integration and excision of a 2,4-dichlorophenoxyacetic acid-degradative plasmid in Alcaligenes paradoxus and evidence of its natural intergeneric transfer. J Bacteriol 176, 5284–5289.
    [Google Scholar]
  8. Kahnert, A., Mirleau, P., Wait, R. & Kertesz, M. A. ( 2002; ). The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in Pseudomonas putida. Environ Microbiol 4, 225–237.[CrossRef]
    [Google Scholar]
  9. Kawai, F. & Takeuchi, M. ( 1996; ). Taxonomical position of newly isolated polyethylene glycol-utilizing bacteria. J Ferment Bioeng 82, 492–494.[CrossRef]
    [Google Scholar]
  10. Kawai, F. & Yamanaka, H. ( 1986; ). Biodegradation of polyethylene glycol by symbiotic mixed culture (obligate mutualism). Arch Microbiol 146, 125–129.[CrossRef]
    [Google Scholar]
  11. Kawai, F., Kimura, T., Fukaya, M., Tani, Y., Ogata, K., Ueno, T. & Fukami, H. ( 1978; ). Bacterial oxidation of polyethylene glycol. Appl Environ Microbiol 35, 679–684.
    [Google Scholar]
  12. Kawai, F., Kimura, T., Tani, Y., Yamada, H. & Kurachi, K. ( 1985; ). Purification and characterization of polyethylene glycol dehydrogenase involved in the bacterial metabolism of polyethylene glycol. Appl Environ Microbiol 40, 701–705.
    [Google Scholar]
  13. Kilbane, J. J. N., Daram, A., Abbasian, J. & Kayser, K. J. ( 2002; ). Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem Biophys Res Commun 297, 242–248.[CrossRef]
    [Google Scholar]
  14. Kozitskaya, S., Cho, S. H., Dietrich, K., Marre, R., Naber, K. & Ziebuhr, W. ( 2004; ). The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect Immun 72, 1210–1215.[CrossRef]
    [Google Scholar]
  15. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  16. Mahillon, J. & Chandler, M. ( 1998; ). Insertion sequences. Microb Mol Biol Rev 62, 725–774.
    [Google Scholar]
  17. Marmur, J. A. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  18. Neugebauer, H., Herrmann, C., Kammer, W., Schwarz, G., Nordheim, A. & Braun, V. ( 2005; ). ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J Bacteriol 187, 8300–8311.[CrossRef]
    [Google Scholar]
  19. Nojiri, H., Shintani, M. & Omori, T. ( 2004; ). Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl Microbiol Biotechnol 64, 154–174.[CrossRef]
    [Google Scholar]
  20. Ohta, T., Tani, A., Kimbara, K. & Kawai, F. ( 2005; ). A novel nicotinoprotein aldehyde dehydrogenase involved in polyethylene glycol degradation. Appl Microbiol Biotechnol 68, 639–646.[CrossRef]
    [Google Scholar]
  21. Romine, M. F., Stillwell, L. C., Wong, K. K., Thurston, S. J., Sisk, E. C., Sensen, C., Gaasterland, T., Fredrickson, J. K. & Saffer, F. J. D. ( 1999; ). Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181, 1585–1602.
    [Google Scholar]
  22. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  23. Schalk, I. J., Yue, W. W. & Buchanan, S. K. ( 2004; ). Recognition of iron-free siderophores by TonB-dependent iron transporters. Mol Microbiol 54, 14–22.[CrossRef]
    [Google Scholar]
  24. Semsey, S., Virnik, K. & Adhya, S. ( 2006; ). Three-stage regulation of the amphibolic gal operon: from repressosome to GalR-free DNA. J Mol Biol 353, 355–363.
    [Google Scholar]
  25. Southern, E. M. ( 1975; ). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98, 503–517.[CrossRef]
    [Google Scholar]
  26. Sugimoto, M., Tanabe, M., Hataya, M., Enokibara, S., Duine, J. A. & Kawai, F. ( 2001; ). The first step in polyethylene glycol degradation by Sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide. J Bacteriol 183, 6694–6698.[CrossRef]
    [Google Scholar]
  27. Takeuchi, M., Kawai, F., Shimada, Y. & Yokota, A. ( 1993; ). Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16, 227–238.[CrossRef]
    [Google Scholar]
  28. Takeuchi, M., Hamana, K. & Hiraishi, A. ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51, 1405–1417.
    [Google Scholar]
  29. Tan, H. M. ( 1999; ). Bacterial catabolic transposons. Appl Microbiol Biotechnol 51, 1–12.[CrossRef]
    [Google Scholar]
  30. Tiirola, M. A., Mannisto, M. K., Puhakka, J. A. & Kulomaa, M. S. ( 2002; ). Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl Environ Microbiol 68, 173–180.[CrossRef]
    [Google Scholar]
  31. Wattiau, P., Bastiaens, L., van Herwijnen, R., Daal, L., Parsons, J. R., Renard, M. E., Springael, D. & Cornelis, G. R. ( 2001; ). Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol 152, 861–872.[CrossRef]
    [Google Scholar]
  32. Yabuuchi, E., Kosako, Y., Fujiwara, N., Naka, T., Matsunaga, I., Ogura, H. & Kobayashi, K. ( 2002; ). Emendation of the genus Sphingomonas Yabuuchi et al., 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjuction with Blastomonas ursincola. Int J Syst Evol Microbiol 52, 1485–1496.[CrossRef]
    [Google Scholar]
  33. Yamanaka, H. & Kawai, F. ( 1989; ). Purification and characterization of constitutive polyethylene glycol (PEG) dehydrogenase of a PEG 4000-utilizing Flavobacterium sp. No. 203. J Ferment Bioeng 67, 324–330.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000992-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000992-0
Loading

Data & Media loading...

Supplements

Supplementary Fig. S1 [PDF file](375 KB)

PDF

Supplementary Table S1 [PDF file](23 KB)

PDF

Supplementary Table S2 [PDF file](131 KB)

PDF

Supplementary Table S3 [PDF file](10 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error