1887

Abstract

thin aggregative fimbriae (Tafi; curli) are important in pathogenesis and biofilm formation; however, less is known of their structure and morphogenesis. In the Tafi operon, the transcription and role of have been elusive. In this study, transcripts were detected using a sensitive reverse transcriptase technique. Native AgfC was not detected using polyclonal antibodies generated against purified hexahistidine-tagged AgfC; however, expression revealed that AgfC was localized to the periplasm as a mature form. An isogenic Δ mutant displayed an abundance of 20 nm fibres, in addition to native Tafi (5–7 nm), and had an increase in cell surface hydrophobicity. Purified 20 nm fibres were depolymerized under exceptionally stringent conditions to release what proved to be AgfA subunits. This revealed that the 20 nm fibres represented a different form of Tafi. The role of AgfC in Tafi assembly was investigated further using an antibody-capture assay of isogenic Δ mutants. A soluble antibody-accessible form of AgfA was captured in wild-type (), Δ and Δ strains, in support of the extracellular nucleation–precipitation pathway of Tafi assembly, but not in Δ or Δ mutants. This indicates that AgfC and AgfE are important for AgfA extracellular assembly, facilitating the synthesis of Tafi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000935-0
2007-04-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1131.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000935-0&mimeType=html&fmt=ahah

References

  1. Arnqvist, A., Olsen, A., Pfeifer, J., Russell, D. G. & Normark, S. ( 1992; ). The Crl protein activates cryptic genes for curli formation and fibronectin binding in Escherichia coli HB101. Mol Microbiol 6, 2443–2452.
    [Google Scholar]
  2. Austin, J. W., Sanders, G., Kay, W. W. & Collinson, S. K. ( 1998; ). Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162, 295–301.[CrossRef]
    [Google Scholar]
  3. Barak, J. D., Gorski, L., Naraghi-Arani, P. & Charkowski, A. O. ( 2005; ). Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl Environ Microbiol 71, 5685–5691.[CrossRef]
    [Google Scholar]
  4. Bian, Z. & Normark, S. ( 1997; ). Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J 16, 5827–5836.[CrossRef]
    [Google Scholar]
  5. Bian, Z., Brauner, A., Li, Y. & Normark, S. ( 2000; ). Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J Infect Dis 181, 602–612.[CrossRef]
    [Google Scholar]
  6. Bian, Z., Yan, Z. Q., Hansson, G. K., Thoren, P. & Normark, S. ( 2001; ). Activation of inducible nitric oxide synthase/nitric oxide by curli fibers leads to a fall in blood pressure during systemic Escherichia coli infection in mice. J Infect Dis 183, 612–619.[CrossRef]
    [Google Scholar]
  7. Burrows, L. L. ( 2005; ). Weapons of mass retraction. Mol Microbiol 57, 878–888.[CrossRef]
    [Google Scholar]
  8. Chapman, M. R., Robinson, L. S., Pinkner, J. S., Roth, R., Heuser, J., Hammar, M., Normark, S. & Hultgren, S. J. ( 2002; ). Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855.[CrossRef]
    [Google Scholar]
  9. Chirwa, N. T. & Herrington, M. B. ( 2003; ). CsgD, a regulator of curli and cellulose synthesis, also regulates serine hydroxymethyltransferase synthesis in Escherichia coli K-12. Microbiology 149, 525–535.[CrossRef]
    [Google Scholar]
  10. Collinson, S. K., Emody, L., Muller, K. H., Trust, T. J. & Kay, W. W. ( 1991; ). Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 173, 4773–4781.
    [Google Scholar]
  11. Collinson, S. K., Emody, L., Trust, T. J. & Kay, W. W. ( 1992; ). Thin aggregative fimbriae from diarrheagenic Escherichia coli. J Bacteriol 174, 4490–4495.
    [Google Scholar]
  12. Collinson, S. K., Doig, P. C., Doran, J. L., Clouthier, S., Trust, T. J. & Kay, W. W. ( 1993; ). Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. J Bacteriol 175, 12–18.
    [Google Scholar]
  13. Collinson, S. K., Clouthier, S. C., Doran, J. L., Banser, P. A. & Kay, W. W. ( 1996; ). Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae. J Bacteriol 178, 662–667.
    [Google Scholar]
  14. Collinson, S. K., Parker, J. M., Hodges, R. S. & Kay, W. W. ( 1999; ). Structural predictions of AgfA, the insoluble fimbrial subunit of Salmonella thin aggregative fimbriae. J Mol Biol 290, 741–756.[CrossRef]
    [Google Scholar]
  15. Craig, L., Taylor, R. K., Pique, M. E., Adair, B. D., Arvai, A. S., Singh, M., Lloyd, S. J., Shin, D. S., Getzoff, E. D. & other authors ( 2003; ). Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 11, 1139–1150.[CrossRef]
    [Google Scholar]
  16. Dibb-Fuller, M. P., Allen-Vercoe, E., Thorns, C. J. & Woodward, M. J. ( 1999; ). Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis. Microbiology 145, 1023–1031.[CrossRef]
    [Google Scholar]
  17. Doran, J. L., Collinson, S. K., Burian, J. & other authors ( 1993; ). DNA-based diagnostic tests for Salmonella species targeting agfA, the structural gene for thin, aggregative fimbriae. J Clin Microbiol 31, 2263–2273.
    [Google Scholar]
  18. Duguid, J. P., Anderson, E. S. & Campbell, I. ( 1966; ). Fimbriae and adhesive properties in Salmonellae. J Pathol Bacteriol 92, 107–138.[CrossRef]
    [Google Scholar]
  19. Engvall, E. & Carlsson, H. E. ( 1976; ). Enzyme-linked immunosorbent assay, ELISA. In Immunoenzymatic Techniques, pp. 135–147. Amsterdam: Elsevier.
  20. Feutrier, J., Kay, W. W. & Trust, T. J. ( 1986; ). Purification and characterization of fimbriae from Salmonella enteritidis. J Bacteriol 168, 221–227.
    [Google Scholar]
  21. Gerstel, U. & Romling, U. ( 2003; ). The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Res Microbiol 154, 659–667.[CrossRef]
    [Google Scholar]
  22. Gibson, D. L., White, A. P., Snyder, S. D., Martin, S., Heiss, C., Azadi, P., Surette, M. & Kay, W. W. ( 2006; ). Salmonella produces an O-antigen capsule regulated by AgfD and important for environmental persistence. J Bacteriol 188, 7722–7730.[CrossRef]
    [Google Scholar]
  23. Hammar, M., Arnqvist, A., Bian, Z., Olsen, A. & Normark, S. ( 1995; ). Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18, 661–670.[CrossRef]
    [Google Scholar]
  24. Hammar, M., Bian, Z. & Normark, S. ( 1996; ). Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci U S A 93, 6562–6566.[CrossRef]
    [Google Scholar]
  25. Hashimoto-Gotoh, T., Franklin, F. C., Nordheim, A. & Timmis, K. N. ( 1981; ). Specific-purpose plasmid cloning vectors. I. Low copy number, temperature-sensitive, mobilization-defective pSC101-derived containment vectors. Gene 16, 227–235.[CrossRef]
    [Google Scholar]
  26. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. ( 1989; ). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68.[CrossRef]
    [Google Scholar]
  27. Kim, S. H. & Kim, Y. H. ( 2004; ). Escherichia coli O157 : H7 adherence to HEp-2 cells is implicated with curli expression and outer membrane integrity. J Vet Sci 5, 119–124.
    [Google Scholar]
  28. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  29. La Ragione, R. M., Cooley, W. A. & Woodward, M. J. ( 2000; ). The role of fimbriae and flagella in the adherence of avian strains of Escherichia coli O78 : K80 to tissue culture cells and tracheal and gut explants. J Med Microbiol 49, 327–338.
    [Google Scholar]
  30. Loferer, H., Hammar, M. & Normark, S. ( 1997; ). Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol Microbiol 26, 11–23.[CrossRef]
    [Google Scholar]
  31. Low, D. B. B. & van der Woude, M. ( 1996; ). Fimbriae. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, pp. 146–157. Edited by F. C. Neidhardt. Washington, DC: American Society for Microbiology.
  32. Lundmark, K., Westermark, G. T., Olsen, A. & Westermark, P. ( 2005; ). Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. Proc Natl Acad Sci U S A 102, 6098–6102.[CrossRef]
    [Google Scholar]
  33. Mayer, M. P. ( 1995; ). A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163, 41–46.[CrossRef]
    [Google Scholar]
  34. Olsen, A., Herwald, H., Wikstrom, M., Persson, K., Mattsson, E. & Bjorck, L. ( 2002; ). Identification of two protein-binding and functional regions of curli, a surface organelle and virulence determinant of Escherichia coli. J Biol Chem 277, 34568–34572.[CrossRef]
    [Google Scholar]
  35. Persson, K., Russell, W., Morgelin, M. & Herwald, H. ( 2003; ). The conversion of fibrinogen to fibrin at the surface of curliated Escherichia coli bacteria leads to the generation of proinflammatory fibrinopeptides. J Biol Chem 278, 31884–31890.[CrossRef]
    [Google Scholar]
  36. Pohl, T. ( 1990; ). Guide to protein purification. In Methods in Enzymology, vol. 182. Edited by M. P. Deutscher. New York: Academic Press.
  37. Prigent-Combaret, C., Prensier, G., Le Thi, T. T., Vidal, O., Lejeune, P. & Dorel, C. ( 2000; ). Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2, 450–464.[CrossRef]
    [Google Scholar]
  38. Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Lejeune, P., Landini, P. & Dorel, C. ( 2001; ). Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183, 7213–7223.[CrossRef]
    [Google Scholar]
  39. Robinson, L. S., Ashman, E. M., Hultgren, S. J. & Chapman, M. R. ( 2006; ). Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol 59, 870–881.[CrossRef]
    [Google Scholar]
  40. Romling, U., Bian, Z., Hammar, M., Sierralta, W. D. & Normark, S. ( 1998; ). Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180, 722–731.
    [Google Scholar]
  41. Romling, U., Rohde, M., Olsen, A., Normark, S. & Reinkoster, J. ( 2000; ). AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36, 10–23.[CrossRef]
    [Google Scholar]
  42. Rosenberg, M., Gutnick, D. & Rosenberg, E. ( 1980; ). Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiology Lett 9, 29–33.[CrossRef]
    [Google Scholar]
  43. Sakellaris, H., Hannink, N. K., Rajakumar, K., Bulach, D., Hunt, M., Sasakawa, C. & Adler, B. ( 2000; ). Curli loci of Shigella spp. Infect Immun 68, 3780–3783.[CrossRef]
    [Google Scholar]
  44. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  45. Soto, G. E. & Hultgren, S. J. ( 1999; ). Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181, 1059–1071.
    [Google Scholar]
  46. Sukupolvi, S., Lorenz, R. G., Gordon, J. I., Bian, Z., Pfeifer, J. D., Normark, S. J. & Rhen, M. ( 1997; ). Expression of thin aggregative fimbriae promotes interaction of Salmonella typhimurium SR-11 with mouse small intestinal epithelial cells. Infect Immun 65, 5320–5325.
    [Google Scholar]
  47. Sweet, G. D., Somers, J. M. & Kay, W. W. ( 1979; ). Purification and properties of a citrate-binding transport component, the C protein of Salmonella typhimurium. Can J Biochem 57, 710–715.[CrossRef]
    [Google Scholar]
  48. Tukel, C., Raffatellu, M., Humphries, A. D. & other authors ( 2005; ). CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Mol Microbiol 58, 289–304.[CrossRef]
    [Google Scholar]
  49. Vidal, O., Longin, R., Prigent-Combaret, C., Dorel, C., Hooreman, M. & Lejeune, P. ( 1998; ). Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180, 2442–2449.
    [Google Scholar]
  50. Wang, G., Barton, C. & Rodgers, F. G. ( 2002; ). Bacterial DNA decontamination for reverse transcription polymerase chain reaction (RT-PCR). J Microbiol Methods 51, 119–121.[CrossRef]
    [Google Scholar]
  51. White, A. P., Collinson, S. K., Burian, J., Clouthier, S. C., Banser, P. A. & Kay, W. W. ( 1999; ). High efficiency gene replacement in Salmonella enteritidis: chimeric fimbrins containing a T-cell epitope from Leishmania major. Vaccine 17, 2150–2161.[CrossRef]
    [Google Scholar]
  52. White, A. P., Collinson, S. K., Banser, P. A., Gibson, D. L., Paetzel, M., Strynadka, N. C. & Kay, W. W. ( 2001; ). Structure and characterization of AgfB from Salmonella enteritidis thin aggregative fimbriae. J Mol Biol 311, 735–749.[CrossRef]
    [Google Scholar]
  53. White, A. P., Gibson, D. L., Collinson, S. K., Banser, P. A. & Kay, W. W. ( 2003; ). Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar Enteritidis. J Bacteriol 185, 5398–5407.[CrossRef]
    [Google Scholar]
  54. White, A. P., Gibson, D. L., Kim, W., Kay, W. W. & Surette, M. G. ( 2006; ). Thin aggregative fimbriae and cellulose enhance long-term survival and persistence of Salmonella. J Bacteriol 188, 3219–3227.[CrossRef]
    [Google Scholar]
  55. White, A. P., Allen-Vercoe, E., Jones, B. W., DeVinney, R., Kay, W. W. & Surette, M. G. ( 2007; ). An efficient system for markerless gene replacement applicable in a wide variety of enterobacterial species. Can J Microbiol 53, 56–62.[CrossRef]
    [Google Scholar]
  56. Zogaj, X., Bokranz, W., Nimtz, M. & Romling, U. ( 2003; ). Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71, 4151–4158.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000935-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000935-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error