1887

Abstract

The mechanisms by which pathogens sense and transport iron are important during infection, because of the low availability of free iron in the mammalian host. Iron is a key nutritional cue for the pathogen , because it influences expression of the polysaccharide capsule that is the major virulence factor of the fungus. In this study, mutants were constructed with a defect in the iron-regulated gene that encodes a putative siderophore iron transporter. Analysis of mutants in serotype A and D strains demonstrated that is required for the use of siderophore-bound iron, and for growth in a low-iron environment. The mutants also showed changes in melanin formation and cell wall density, and it was found that mutants defective in protein kinase A, which is known to influence melanization and capsule formation, showed elevated transcripts in both the serotype A and the serotype D backgrounds. Finally, the mutants were tested for virulence in a murine model of cryptococcosis, and it was found that was not required for virulence. Overall, these studies establish links between iron acquisition, melanin formation and cAMP signalling in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000927-0
2007-01-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/29.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000927-0&mimeType=html&fmt=ahah

References

  1. Alspaugh, J. A., Perfect, J. R. & Heitman, J. ( 1997; ). Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev 11, 3206–3217.[CrossRef]
    [Google Scholar]
  2. Alspaugh, J. A., Pukkila-Worley, R., Harashima, T., Cavallo, L. M., Funnell, D., Cox, G. M., Perfect, J. R., Kronstad, J. W. & Heitman, J. ( 2002; ). Adenylyl cyclase functions downstream of the G alpha protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot Cell 1, 75–84.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  4. Ardon, O., Bussey, H., Philpott, C., Ward, D. M., Davis-Kaplan, S., Verroneau, S., Jiang, B. & Kaplan, J. ( 2001; ). Identification of a Candida albicans ferrichrome transporter and its characterization by expression in Saccharomyces cerevisiae. J Biol Chem 276, 43049–43055.[CrossRef]
    [Google Scholar]
  5. Barasch, J. & Mori, K. ( 2004; ). Cell biology: iron thievery. Nature 432, 811–813.[CrossRef]
    [Google Scholar]
  6. Barchiesi, F., Cogliati, M., Esposto, M. C., Spreghini, E., Schimizzi, A. M., Wickes, B. L., Scalise, G. & Viviani, M. A. ( 2005; ). Comparative analysis of pathogenicity of Cryptococcus neoformans serotypes A, D and AD in murine cryptococcosis. J Infect 51, 10–16.[CrossRef]
    [Google Scholar]
  7. Bose, I., Reese, A. J., Ory, J. J., Janbon, G. & Doering, T. L. ( 2003; ). A yeast under cover: the capsule of Cryptococcus neoformans. Eukaryot Cell 2, 655–663.[CrossRef]
    [Google Scholar]
  8. Casadevall, A. & Perfect, J. R. ( 1998; ). Cryptococcus neoformans. Washington, DC: American Society for Microbiology.
  9. Cowart, R. E., Singleton, F. L. & Hind, J. S. ( 1993; ). A comparison of bathophenanthrolinedisulfonic acid and ferrozine as chelators of iron(II) in reduction reactions. Anal Biochem 211, 151–155.[CrossRef]
    [Google Scholar]
  10. Davidson, R. C., Blankenship, J. R., Kraus, P. R., de Jesus Berrios, M., Hull, C. M., D'Souza, C., Wang, P. & Heitman, J. ( 2002; ). A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148, 2607–2615.
    [Google Scholar]
  11. D'Souza, C. A., Alspaugh, J. A., Yue, C., Harashima, T., Cox, G. M., Perfect, J. R. & Heitman, J. ( 2001; ). Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 21, 3179–3191.[CrossRef]
    [Google Scholar]
  12. Eisenman, H. C., Nosanchuk, J. D., Webber, J. B., Emerson, R. J., Camesano, T. A. & Casadevall, A. ( 2005; ). Microstructure of cell wall-associated melanin in the human pathogenic fungus Cryptococcus neoformans. Biochemistry 44, 3683–3693.[CrossRef]
    [Google Scholar]
  13. Gomez, B. L. & Nosanchuk, J. D. ( 2003; ). Melanin and fungi. Curr Opin Infect Dis 16, 91–96.[CrossRef]
    [Google Scholar]
  14. Haas, H. ( 2003; ). Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophore in iron uptake and storage. Appl Microbiol Biotechnol 62, 316–330.[CrossRef]
    [Google Scholar]
  15. Heung, L. J., Kaiser, A. E., Luberto, C. & Del Poeta, M. ( 2005; ). The role and mechanism of diacylglycerol-protein kinase C1 signaling in melanogenesis by Cryptococcus neoformans. J Biol Chem 280, 28547–28555.[CrossRef]
    [Google Scholar]
  16. Heymann, P., Gerads, M., Schaller, M., Dromer, F., Winkelmann, G. & Ernst, J. F. ( 2002; ). The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun 70, 5246–5255.[CrossRef]
    [Google Scholar]
  17. Hicks, J. K., D'Souza, C. A., Cox, G. M. & Heitman, J. ( 2004; ). Cyclic AMP-dependent protein kinase catalytic subunits have divergent roles in virulence factor prodution in two varieties of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell 3, 14–26.[CrossRef]
    [Google Scholar]
  18. Hissen, A. H., Chow, J. M., Pinto, L. J. & Moore, M. M. ( 2004; ). Survival of Aspergillus fumigatus in serum involves removal of iron from transferrin: the role of siderophores. Infect Immun 72, 1402–1408.[CrossRef]
    [Google Scholar]
  19. Hissen, A. H., Wan, A. N., Warwas, M. L., Pinto, L. J. & Moore, M. M. ( 2005; ). The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding l-ornithine N5-oxygenase, is required for virulence. Infect Immun 73, 5493–5503.[CrossRef]
    [Google Scholar]
  20. Hu, C. J., Bai, C., Zheng, X. D., Wang, Y. M. & Wang, Y. ( 2002; ). Characterization and functional analysis of the siderophore-Fe transporter CaArn1p in Candida albicans. J Biol Chem 277, 30598–30605.[CrossRef]
    [Google Scholar]
  21. Jacobson, E. S. ( 2000; ). Pathogenic roles for fungal melanins. Clin Microbiol Rev 13, 708–717.[CrossRef]
    [Google Scholar]
  22. Jacobson, E. S. & Compton, G. M. ( 1996; ). Discordant regulation of phenoloxidase and capsular polysaccharide in Cryptococcus neoformans. J Med Vet Mycol 34, 289–291.[CrossRef]
    [Google Scholar]
  23. Jacobson, E. S. & Petro, M. J. ( 1987; ). Extracellular iron chelation in Cryptococcus neoformans. J Med Vet Mycol 25, 415–418.[CrossRef]
    [Google Scholar]
  24. Jacobson, E. S., Goodner, A. P. & Nyhus, K. J. ( 1998; ). Ferrous iron uptake in Cryptococcus neoformans. Infect Immun 66, 4169–4175.
    [Google Scholar]
  25. Janbon, G. ( 2004; ). Cryptococcus neoformans capsule biosynthesis and regulation. FEMS Yeast Res 4, 765–771.[CrossRef]
    [Google Scholar]
  26. Kim, Y., Yun, C.-W. & Philpott, C. C. ( 2002; ). Ferrichrome induces endosome to plasma membrane cycling of the ferrichrome tranporter, Arn1p, in Saccharomyces cerevisiae. EMBO J 21, 3632–3642.[CrossRef]
    [Google Scholar]
  27. Knight, S. A., Vilaire, G., Lesuisse, E. & Dancis, A. ( 2005; ). Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun 73, 5482–5492.[CrossRef]
    [Google Scholar]
  28. Kosman, D. J. ( 2003; ). Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47, 1185–1197.[CrossRef]
    [Google Scholar]
  29. Lesuisse, E., Simon-Casteras, M. & Labbe, P. ( 1998; ). Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144, 3455–3462.[CrossRef]
    [Google Scholar]
  30. Lesuisse, E., Blaiseau, P. L., Dancis, A. & Camadro, J. M. ( 2001; ). Siderophore uptake and use by the yeast Saccharomyces cerevisiae. Microbiology 147, 289–298.
    [Google Scholar]
  31. Lian, T. S., Simmer, M. I., D'Souza, C. A., Steen, B. R., Zuyderduyn, S. D., Jones, S. J., Marra, M. A. & Kronstad, J. W. ( 2005; ). Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans. Mol Microbiol 55, 1452–1472.
    [Google Scholar]
  32. Liu, L., Tewari, R. P. & Williamson, P. R. ( 1999; ). Laccase protects Cryptococcus neoformans from antifungal activity of alveolar macrophages. Infect Immun 11, 6034–6039.
    [Google Scholar]
  33. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  34. Loftus, B. J., Fung, E., Roncaglia, P., Rowley, D., Amedeo, P., Bruno, D., Vamathevan, J., Miranda, M., Anderson, I. J. & other authors ( 2005; ). The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307, 1321–1324.[CrossRef]
    [Google Scholar]
  35. Noverr, M. C., Williamson, P. R., Fajardo, R. S. & Huffnagle, G. B. ( 2004; ). CNLAC1 is required for extrapulmonary dissemination of Cryptococcus neoformans but not pulmonary persistence. Infect Immun 3, 1693–1699.
    [Google Scholar]
  36. Nurudeen, T. A. & Ahearn, D. G. ( 1979; ). Regulation of melanin production by Cryptococcus neoformans. J Clin Microbiol 10, 724–729.
    [Google Scholar]
  37. Nyhus, K. J. & Jacobson, E. S. ( 1999; ). Genetic and physiologic characterization of ferric/cupric reductase constitutive mutants of Cryptococcus neoformans. Infect Immun 5, 2357–2365.
    [Google Scholar]
  38. Nyhus, K. J., Wilborn, A. T. & Jacobson, E. S. ( 1997; ). Ferric iron reduction by Cryptococcus neoformans. Infect Immun 65, 434–438.
    [Google Scholar]
  39. Park, Y. S., Jeong, H. S., Sung, H. C. & Yun, C. W. ( 2005; ). Sed1p interacts with Arn3p physically and mediates ferrioxamine B uptake in Saccharomyces cerevisiae. Curr Genet 47, 150–155.[CrossRef]
    [Google Scholar]
  40. Perfect, J. R. ( 2005; ). Cryptococcus neoformans: a sugar-coated killer with designer genes. FEMS Immunol Med Microbiol 45, 395–404.[CrossRef]
    [Google Scholar]
  41. Polacheck, I., Hearing, V. J. & Kwon-Chung, K. J. ( 1982; ). Biochemical studies of phenoloxidase and utilization of catecholamines in Cryptococcus neoformans. J Bacteriol 150, 1212–1220.
    [Google Scholar]
  42. Protchenko, O., Ferea, T., Rashford, J., Tiedeman, J., Brown, P. O., Botstein, D. & Philpott, C. C. ( 2001; ). Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J Biol Chem 276, 49244–49250.[CrossRef]
    [Google Scholar]
  43. Pukkila-Worley, R., Gerrald, Q. D., Kraus, P. R., Boily, M. J., Davis, M. J., Giles, S. S., Cox, G. M., Heitman, J. & Alspaugh, J. A. ( 2005; ). Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot Cell 4, 190–201.[CrossRef]
    [Google Scholar]
  44. Ramanan, N. & Wang, Y. ( 2000; ). A high-affinity iron permease essential for Candida albicans virulence. Science 288, 1062–1064.[CrossRef]
    [Google Scholar]
  45. Ratledge, C. & Dover, L. G. ( 2000; ). Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54, 881–941.[CrossRef]
    [Google Scholar]
  46. Robertson, L. S., Causton, H. C., Young, R. A. & Fink, G. R. ( 2000; ). The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci U S A 97, 5984–5988.[CrossRef]
    [Google Scholar]
  47. Salas, S. D., Bennett, J. E., Kwon-Chung, K. J., Perfect, J. R. & Williamson, P. R. ( 1996; ). Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 184, 377–386.[CrossRef]
    [Google Scholar]
  48. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  49. Schrettl, M., Bignell, E., Kragl, C., Joechl, C., Rogers, T., Arst, H. N., Jr, Haynes, K. & Haas, H. ( 2004; ). Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 200, 1213–1219.[CrossRef]
    [Google Scholar]
  50. Stearman, R., Yuan, D. S., Yamaguchi-Iwai, Y., Klausner, R. D. & Dancis, A. ( 1996; ). A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 1552–1557.[CrossRef]
    [Google Scholar]
  51. Toffaletti, D. L., Rude, T. H., Johnston, S. A., Durack, D. T. & Perfect, J. R. ( 1993; ). Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175, 1405–1411.
    [Google Scholar]
  52. Varma, A., Edman, J. C. & Kwon-Chung, K. J. ( 1992; ). Molecular and genetic analysis of URA5 transformants of Cryptococcus neoformans. Infect Immun 60, 1101–1108.
    [Google Scholar]
  53. Vartivarian, S. E., Anaissie, E. J., Cowart, R. E., Sprigg, H. A., Tingler, M. J. & Jacobson, E. S. ( 1993; ). Regulation of cryptococcal capsular polysaccharide by iron. J Infect Dis 167, 186–190.[CrossRef]
    [Google Scholar]
  54. Walton, F. J., Idnurm, A. & Heitman, J. ( 2005; ). Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 57, 1381–1396.[CrossRef]
    [Google Scholar]
  55. Williamson, P. R. ( 1997; ). Laccase and melanin in the pathogensis of Cryptococcus neoformans. Front Biosci 1, 99–107.
    [Google Scholar]
  56. Yu, J. H., Hamari, Z., Han, K. H., Seo, J. A., Reyes-Dominguez, Y. & Scazzocchio, C. ( 2004; ). Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41, 973–981.[CrossRef]
    [Google Scholar]
  57. Yun, C.-W., Ferea, T., Rashford, J., Ardon, O., Brown, P. O., Botstein, D., Kaplan, J. & Philpott, C. C. ( 2000a; ). Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J Biol Chem 275, 10709–10715.[CrossRef]
    [Google Scholar]
  58. Yun, C.-W., Tiedeman, J., Moore, R. E. & Philpott, C. C. ( 2000b; ). Siderophore-iron uptake in Saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. J Biol Chem 275, 16354–16359.[CrossRef]
    [Google Scholar]
  59. Zaragoza, O., Fries, B. C. & Casadevall, A. ( 2003; ). Induction of capsule growth in Cryptococcus neoformans by mammalian serum and CO2. Infect Immun 71, 6155–6164.[CrossRef]
    [Google Scholar]
  60. Zhu, X. & Williamson, P. R. ( 2004; ). Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res 5, 1–10.[CrossRef]
    [Google Scholar]
  61. Zhu, X., Gibbons, J., Garcia-Rivera, J., Casadevall, A. & Williamson, P. R. ( 2001; ). Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infect Immun 69, 5589–5596.[CrossRef]
    [Google Scholar]
  62. Zhu, X., Gibbons, J., Zhang, S. & Williamson, P. R. ( 2003; ). Copper-mediated reversal of defective laccase in a Δvph1 avirulent mutant of Cryptococcus neoformans. Mol Microbiol 47, 1007–1014.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000927-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000927-0
Loading

Data & Media loading...

Supplements

Supplementary Table S1. [PDF file](33 KB)

PDF

Supplementary Fig. S1. [PDF file](55 KB)

PDF

Corrigendum 

PDF

Adobe PDF - fig7_corrected_jan2007_.pdf 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error