1887

Abstract

The abundant proteolytic plasminogen (Plg)/plasmin system is important in several physiological functions in mammals and also engaged by a number of pathogenic microbial species to increase tissue invasiveness or to obtain nutrients. This paper reports that a commensal bacterium, , interacts with the Plg system. Strain ST1 of enhanced activation of human Plg by the tissue-type Plg activator (tPA), whereas enhancement of the urokinase-mediated Plg activation was lower. ST1 cells bound Plg, plasmin and tPA only poorly, and the Plg-binding and activation-enhancing capacities were associated with extracellular material released from the bacteria into buffer. The extracellular proteome of ST1 contained enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as major components. The enolase and the GAPDH genes of ST1 were cloned, sequenced and expressed in recombinant as His-fusion proteins, which bound Plg and enhanced its activation by tPA. Variable levels of secretion of enolase and GAPDH proteins as well as of the Plg activation cofactor function were detected in strains representing major taxonomic groups of the genus . So far, interference with the Plg system has been addressed with pathogenic microbes. The results reported here demonstrate a novel interaction between a member of the microbiota and a major proteolytic system in humans.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000901-0
2007-04-01
2024-09-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1112.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000901-0&mimeType=html&fmt=ahah

References

  1. Aleljung P., Paulsson M., Andersson M., Naidu A. S., Emödy, L., Wadström T. 1991; Collagen binding by lactobacilli. Curr Microbiol 62:2244–2251
    [Google Scholar]
  2. Altermann E., Russel W. M., Azcarate-Peril M. A., Barrangou R., Buck B. L., McAuliffe O., Souther N., Dobson A., Duong T. & other authors 2005; Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102:3906–3912 [CrossRef]
    [Google Scholar]
  3. Alvarez R. A., Blaylock M. W., Baseman J. B. 2003; Surface localized glyceraldehyde-3-phosphate dehydrogenase of Mycoplasma genitalium binds mucin. Mol Microbiol 48:1417–1425 [CrossRef]
    [Google Scholar]
  4. Antikainen J., Anton L., Sillanpää J., Korhonen T. K. 2002; Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly. Mol Microbiol 46:381–394 [CrossRef]
    [Google Scholar]
  5. Bastian E. D., Brown R. J. 1996; Plasmin in milk and dairy products: an update. Int Dairy J 6:435–457 [CrossRef]
    [Google Scholar]
  6. Bergmann S., Rohde M., Chhatwal G. S., Hammerschmidt S. 2001; α -Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40:1273–1287 [CrossRef]
    [Google Scholar]
  7. Bergmann S., Wild D., Diekmann O., Frank R., Bracht D., Chhatwal G. S., Hammerschmidt S. 2003; Identification of a novel plasmin(ogen)-binding motif in surface displayed α -enolase of Streptococcus pneumoniae . Mol Microbiol 49:411–423 [CrossRef]
    [Google Scholar]
  8. Bergonzelli G. E., Granato D., Pridmore R. D., Marvin-Guy L. F., Donnicola D., Corthésy-Theulaz I. E. 2006; GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and gastric pathogen Helicobacter pylori . Infect Immun 74:425–434 [CrossRef]
    [Google Scholar]
  9. Boekhorst J., Wels M., Kleerebezem M., Siezen R. J. 2006; The predicted secretome of Lactobacillus plantarum WCFS1 shed light on interactions with the environment. Microbiology 152:3175–3183 [CrossRef]
    [Google Scholar]
  10. Bolotin A., Wincker P., Mauger S., Jailloin O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A. 2001; The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753 [CrossRef]
    [Google Scholar]
  11. Broeseker T. A., Boyle M. D. P., Lottenberg R. 1988; Characterization of the interaction of human plasmin with its specific receptor on a group A streptococci. Microb Pathog 5:19–27 [CrossRef]
    [Google Scholar]
  12. Castellino F. J., Ploplis V. A. 2005; Structure and function of the plasminogen/plasmin system. Thromb Haemost 93:647–654
    [Google Scholar]
  13. Chhatwal G. S. 2002; Anchorless adhesins and invasins of Gram-positive bacteria: a new class of virulence factors. Trends Microbiol 10:205–208 [CrossRef]
    [Google Scholar]
  14. Coleman J. L., Benach J. L. 1999; Use of the plasminogen activation system by microorganisms. J Lab Clin Med 134:567–576 [CrossRef]
    [Google Scholar]
  15. Derbise A., Song Y. P., Parikh S., Fischetti V. A., Pancholi V. 2004; Role of the C-terminal lysine residues of streptococcal surface enolases in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect Immun 72:94–105 [CrossRef]
    [Google Scholar]
  16. Edelman S. 2005 Mucosa-adherent lactobacilli: commensal and pathogenic characteristics. PhD thesis University of Helsinki;
    [Google Scholar]
  17. Edelman S., Kettunen H., Rautonen N., Apajalahti J., Korhonen T. K., Westerlund-Wikström B., Leskelä S. 2002; In vitro adhesion specificity of indigenous lactobacilli within the avian intestinal tract. Appl Environ Microbiol 68:5155–5159 [CrossRef]
    [Google Scholar]
  18. Ehinger S., Schubert W.-D., Bergmann S., Hammerschmidt S., Heinz D. W. 2004; Plasmin(ogen)-binding α -enolase from Streptococcus pneumoniae : crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol 343:997–1005 [CrossRef]
    [Google Scholar]
  19. Eichenbaum Z., Green B. D., Scott J. R. 1996; Iron starvation causes release from the group A streptococcus ribosylating protein called plasmin receptor or surface glyceraldehyde-3-phosphate dehydrogenase. Infect Immun 64:1956–1960
    [Google Scholar]
  20. Farina A., Tiberto R. A., Tacconelli A., Cappabianca L., Gulino A., Mackay A. R. 1996; Identification of plasminogen in matrigel and its activation by reconstitution of this basement membrane extract. BioTechniques 21:904–909
    [Google Scholar]
  21. Fujisawa T., Benno Y., Yaeshima T., Mitsuoka T. 1992; Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 (Johnson et al . 1980) with the type strain of Lactobacillus amylovorus ; (Nakamura 1981 Int J Syst Bacteriol 42:487–491 [CrossRef]
    [Google Scholar]
  22. Johnson J. L., Phelps C. F., Cummins C. S., London J., Gasser F. 1980; Taxonomy of the Lactobacillus acidophilus group. Int J Syst Bacteriol 30:53–68 [CrossRef]
    [Google Scholar]
  23. Jönsson K., Guo B. P., Monstein H.-J., Mekalanos J. J., Kronvall G. 2004; Molecular cloning and characterization of two Helicobacter pylori genes coding for plasminogen-binding proteins. Proc Natl Acad Sci U S A 101:1852–1857 [CrossRef]
    [Google Scholar]
  24. Kleerebezem M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O. P., Leer R., Tarchini R., Peters S. A., Sandbrink H. M. & other authors 2003; Complete genome sequence of Lactobacillus plantarum WSFS1. Proc Natl Acad Sci U S A 100:1990–1995 [CrossRef]
    [Google Scholar]
  25. Kukkonen M., Saarela S., Rhen M., Korhonen T. K., Lähteenmäki K., Hynönen U., Westerlund-Wikström B. 1998; Identification of two laminin-binding fimbriae, the type-1 fimbria of Salmonella enterica serovar typhimurium and the G fimbria of Escherichia coli , as plasminogen receptors. Infect Immun 66:4965–4970
    [Google Scholar]
  26. Kuusela P., Saksela O. 1990; Binding and activation of plasminogen at the surface of Staphylococcus aureus . Increase in affinity after conversion to the Lys form of the ligand. Eur J Biochem 193:759–765 [CrossRef]
    [Google Scholar]
  27. Lähteenmäki K., Virkola R., Pouttu R., Kuusela P., Kukkonen M., Korhonen T. K. 1995; Bacterial plasminogen receptors: in-vitro evidence for a role in degradation of the mammalian extracellular matrix. Infect Immun 63:3659–3664
    [Google Scholar]
  28. Lähteenmäki K., Kuusela P., Korhonen T. K. 2001; Bacterial plasminogen activators and receptors. FEMS Microbiol Rev 25:531–552 [CrossRef]
    [Google Scholar]
  29. Lähteenmäki K., Edelman S., Korhonen T. K. 2005; Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol 13:79–85 [CrossRef]
    [Google Scholar]
  30. Lenz L. L., Mohammadi S., Geissler A., Portnoy D. A. 2003; SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci U S A 100:12432–12437 [CrossRef]
    [Google Scholar]
  31. Longstaff C., Thelwell C. 2005; Understanding the enzymology of fibrinolysis and improving thrombolytic therapy. FEBS Lett 579:3303–3309 [CrossRef]
    [Google Scholar]
  32. Mangel W. F., Lin B., Ramakrishnan V. 1990; Characterization of an extremely large, ligand-induced conformational change in plasminogen. Science 248:69–73 [CrossRef]
    [Google Scholar]
  33. McGrady J. A., Butcher W. G., Beighton D., Switalski L. M. 1995; Specific and charge interactions mediate collagen binding by oral lactobacilli. J Dent Res 74:649–657 [CrossRef]
    [Google Scholar]
  34. Mercenier A., Pavan S., Pot B. 2003; Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr Pharmaceut Design 9:175–191 [CrossRef]
    [Google Scholar]
  35. Miettinen M., Vuopio-Varkila J., Varkila K. 1996; Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect Immun 64:5403–5405
    [Google Scholar]
  36. Mitsuoka T. 1969 Vergleichende Unterschungen über die Laktobazillen aus den Faeces von Menschen, Schweinen, und Hühnern Zentralbl Bakteriol [Orig]; 21032–51
    [Google Scholar]
  37. Myöhänen H., Vaheri A. 2004; Regulation and interactions in the activation of cell-associated plasminogen. Cell Mol Life Sci 61:2840–2858 [CrossRef]
    [Google Scholar]
  38. Nelson D., Goldstein J. M., Boatright K., Harty D. W. S., Cook S. L., Hickman P. J., Potempa J., Travis J., Mayo J. A. 2001; pH-regulated secretion of a glyceraldehyde-3-phosphate dehydrogenase from Streptococcus gordonii FSS2: purification, characterization and cloning of the gene encoding this enzyme. J Dent Res 80:371–377 [CrossRef]
    [Google Scholar]
  39. Pancholi V., Chhatwal G. S. 2003; Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol 293:391–401 [CrossRef]
    [Google Scholar]
  40. Pancholi V., Fischetti V. A. 1992; A major surface protein on Group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176:415–426 [CrossRef]
    [Google Scholar]
  41. Pancholi V., Fischetti V. A. 1998; α -Enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273:14503–14515 [CrossRef]
    [Google Scholar]
  42. Peña J. A., Versalovic J. 2003; Lactobacillus rhamnosus GG decreases TNF- α production in lipopolysaccharide-activated murine macrophages by a contact-independent mechanism. Cell Microbiol 5:277–285 [CrossRef]
    [Google Scholar]
  43. Plow E. F., Herren T., Redlitz A., Miles L. A., Hoover-Plow J. L. 1995; The cell biology of the plasminogen system. FASEB J 9:939–945
    [Google Scholar]
  44. Pridmore R. D., Berger B., Desiere F., Vilanova D., Barretto C., Pittet A.-C., Zwahlen M.-C., Rouvet M., Altermann E. & other authors 2004; The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 101:2512–2517 [CrossRef]
    [Google Scholar]
  45. Salvana E. M. T., Frank M. 2006; Lactobacillus endocarditis: case report and review of cases reported since 1992. J Infect 53:e5–e10 [CrossRef]
    [Google Scholar]
  46. Sijbrandi R., Blaauwen T. D., Tame J. R. H., Oudega B., Luirink J., Otto B. R. 2005; Characterization of an iron-regulated alpha-enolase of Bacteroides fragilis . Microbes Infect 7:9–18 [CrossRef]
    [Google Scholar]
  47. Tao Y., Drabik K. A., Waypa T. S., Musch M. W., Alverdy J. C., Schneewind O., Chang E. B., Petrof E. O. 2006; Soluble factors from the probiotic Lactobacillus GG activate MAP kinases and induce cytoprotective heat shock proteins in intestinal epithelial cells. Am J Physiol Cell Physiol 290:C1018–C1030
    [Google Scholar]
  48. Ullberg M., Kronvall G., Karlsson I., Wiman B. 1990; Receptors for human plasminogen on Gram-negative bacteria. Infect Immun 58:21–25
    [Google Scholar]
  49. Ullberg M., Kuusela P., Kristiansen B. E., Kronvall G. 1992; Binding of plasminogen to Neisseria meningitidis and Neisseria gonorrhoeae and formation of surface-associated plasmin. J Infect Dis 166:1329–1334 [CrossRef]
    [Google Scholar]
  50. Wang L., Hayes K. D., Mauer L. J. 2006; Fluorescent labeling study of plasminogen concentration and location in simulated bovine milk systems. J Dairy Sci 89:58–70 [CrossRef]
    [Google Scholar]
  51. Winram S. B., Lottenberg R. 1998; Site-directed mutagenesis of streptococcal plasmin receptor protein (Plr) identifies the C-terminal Lys334 as essential for plasmin binding, but mutation of the plr gene does not reduce plasmin binding to group A streptococci. Microbiology 144:2025–2035 [CrossRef]
    [Google Scholar]
  52. Zhang L., Seiffert D., Fowler B. J., Jenkings G. R., Thinnes T. C., Loskutoff D. J., Parmer R. J., Miles L. A. 2002; Plasminogen has a broad extrahepatic distribution. Thromb Haemost 87:493–501
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.2006/000901-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000901-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error