Plasmids derived from Gifsy-1/Gifsy-2, lambdoid prophages contributing to the virulence of serovar Typhimurium: implications for the evolution of replication initiation proteins of lambdoid phages and enterobacteria Free

Abstract

Gifsy-1 and Gifsy-2 are lambdoid prophages which contribute to the virulence of serovar Typhimurium. The nucleotide sequence of the replication region of both prophages is identical, and similar in organization to the replication region of bacteriophage . To investigate the replication of the Gifsy phages and the relationship between Gifsy and host chromosome replication, a plasmid which contained all the genes and regulatory sequences required for autonomous replication in bacterial cells was constructed. This plasmid, pGifsy, was stably maintained in cells. The helicase loader of the Gifsy phages is very similar to the DnaC protein of the host, a feature characteristic of a large group of prophages common in the sequenced genomes of pathogenic enterobacteria. This DnaC-like protein showed no similarity to the helicase loader of bacteriophage and closely related phages. Interestingly, unlike plasmids derived from bacteriophage ( plasmids), pGifsy did not require a gene encoding the putative helicase loader for replication, although deletion of this gene resulted in a decrease in plasmid copy number. Under these conditions, it was shown that the plasmid utilized the helicase loader coded by the host. On the other hand, the viral protein could not substitute for DnaC in bacterial chromosome replication. The results of the current study support the hypothesis that the enterobacterial helicase loader is of viral origin. This hypothesis explains why the gene for DnaC, the protein central to both replication initiation and replication restart in , is present in the genomes of , , and , but not in the genomes of related enterobacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000802-0
2007-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1884.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000802-0&mimeType=html&fmt=ahah

References

  1. Abascal F., Zardoya R., Posada D. 2005; ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105 [CrossRef]
    [Google Scholar]
  2. Allen G. C., Kornberg A. 1991; Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. J Biol Chem 266:22096–22101
    [Google Scholar]
  3. Boonsombat R., Yeh S., Milne A., Sandler S. J. 2006; A novel dnaC mutation that suppresses priB rep mutant phenotypes in Escherichia coli K-12. Mol Microbiol 60:973–983 [CrossRef]
    [Google Scholar]
  4. Boyd A. C., Sherratt D. J. 1995; The CLIP plasmids: versatile cloning vectors based on the bacteriophage λ origin of replication. Gene 153:57–62 [CrossRef]
    [Google Scholar]
  5. Brussow H., Canchaya C., Hardt W. D. 2004; Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602 [CrossRef]
    [Google Scholar]
  6. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL1-Blue: high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques 5:376–378
    [Google Scholar]
  7. Canback B., Tamas I., Anderson S. G. E. 2004; A phylogenomic study of endosymbiotic bacteria. Mol Biol Evol 21:1110–1122 [CrossRef]
    [Google Scholar]
  8. Caspi R., Pacek M., Consiglieri G., Helinski D. R., Toukdarian A., Konieczny I. 2001; A broad host range replicon with different requirements for replication initiation in three bacterial species. EMBO J 20:3262–3271 [CrossRef]
    [Google Scholar]
  9. Clark M. A., Moran N. A., Baumann P. 1999; Sequence evolution in bacterial endosymbionts having extreme base compositions. Mol Biol Evol 16:1586–1598 [CrossRef]
    [Google Scholar]
  10. Coombes B. K., Wickham M. E., Brown N. F., Lemire S., Bossi L., Hsiao W. W. L., Brinkman F. S. L., Finlay B. B. 2005; Genetic and molecular analysis of GogB, a phage encoded type III-secreted substrate in Salmonella enterica serovar Typhimurium with autonomous expression from its associated phage. J Mol Biol 348:817–830 [CrossRef]
    [Google Scholar]
  11. Datta I., Banik-Maiti S., Adhikari L., Sau S., Das N., Manda N. C. 2005a; The mutation that makes Escherichia coli resistant to λ P gene-mediated host lethality is located within the DNA initiator gene dnaA of the bacterium. J Biochem Mol Biol 38:89–96 [CrossRef]
    [Google Scholar]
  12. Datta I., Sau S., Sil A. K., Mandal N. C. 2005b; The bacteriophage λ DNA replication protein P inhibits the oriC DNA- and ATP-binding functions of the DNA replication initiator protein DnaA of Escherichia coli. J Biochem Mol Biol 38:97–103 [CrossRef]
    [Google Scholar]
  13. Davey M. J., Fang L., McInerney P., Georgescu R. E., O'Donnell M. 2002; The DnaC helicase loader is a dual ATP/ADP switch protein. EMBO J 21:3148–3159 [CrossRef]
    [Google Scholar]
  14. De Groote M. A., Ochsner U. A., Shiloh M. U., Nathan C., Mccord J. M., Dinauer M. C., Libby S. J., Vazquez-Torres A., Xu Y., Fang F. C. 1997; Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci U S A 94:13997–14001 [CrossRef]
    [Google Scholar]
  15. Dodd I. B., Egan J. B. 1987; Systematic method for the detection of potential λ cro-like DNA-binding regions in proteins. J Mol Biol 194:557–564 [CrossRef]
    [Google Scholar]
  16. Dodd I. B., Egan J. B. 1990; Improved detection of helix–turn–helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18:5019–5026 [CrossRef]
    [Google Scholar]
  17. Fang F. C., Degroote M. A., Foster J. W., Baumler A. J., Ochsner U., Testerman T., Bearson S., Giard J., Xu Y. other authors 1999; Virulent Salmonella Typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc Natl Acad Sci U S A 96:7502–7507 [CrossRef]
    [Google Scholar]
  18. Farrant J. L., Sansone A., Canvin J. R., Pallen M. J., Langford P. R., Wallis T. S., Dougan G., Kroll J. S. 1997; Bacterial copper- and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis. Mol Microbiol 25:785–796 [CrossRef]
    [Google Scholar]
  19. Felsenstein J. 2005 phylip (Phylogenetic Inference Package), 3.6. Distributed by the author. Department of Genome Sciences University of Washington; Seattle:
    [Google Scholar]
  20. Figueroa-Bossi N., Bossi L. 1999; Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol 33:167–176 [CrossRef]
    [Google Scholar]
  21. Figueroa-Bossi N., Uzzau S., Maloriol D., Bossi L. 2001; Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol Microbiol 39:260–271 [CrossRef]
    [Google Scholar]
  22. Fiil N., Friesen J. D. 1968; Isolation of relaxed mutants of Escherichia coli. J Bacteriol 95:729–731
    [Google Scholar]
  23. Forterre P. 1999; Displacement of cellular proteins by functional analogues from plasmid or viruses could explain puzzling phylogenies of many DNA informational proteins. Mol Microbiol 33:457–465 [CrossRef]
    [Google Scholar]
  24. Friedman D. I., Court D. L. 2001; Bacteriophage λ : alive and well and still doing its thing. Curr Opin Microbiol 4:201–207 [CrossRef]
    [Google Scholar]
  25. Georgopoulos C. P. 1977; A new bacterial gene ( groPC ) which affects DNA replication. Mol Gen Genet 151:35–39 [CrossRef]
    [Google Scholar]
  26. Georgopoulos C., Herskovitz I. 1971; Escherichia coli mutants blocked in λ DNA synthesis. In The Bacteriophage λ pp 553–564 Edited by Hershey A. D. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Heller R. C., Marians K. J. 2005; The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart. Mol Cell 17:733–743 [CrossRef]
    [Google Scholar]
  28. Herold S., Karch H., Schmidt H. 2004; Shiga toxin-encoding bacteriophages – genomes in motion. Int J Med Microbiol 294:115–121 [CrossRef]
    [Google Scholar]
  29. Ho T. D., Figueroa-Bossi N., Wang M., Uzzau S., Bossi L., Slauch J. M. 2002; Identification of GtgE, a novel virulence factor encoded on the Gifsy-2 bacteriophage of Salmonella enterica serovar Typhimurium. J Bacteriol 184:5234–5239 [CrossRef]
    [Google Scholar]
  30. Ioannou C., Schaeffer P. M., Dixon N. E., Soultanas P. 2006; Helicase binding to DnaI exposes a cryptic DNA-binding site during helicase loading in Bacillus subtilis. Nucleic Acids Res 34:5247–5258 [CrossRef]
    [Google Scholar]
  31. Iyer L. M., Koonin E. V., Leipe D. D., Aravind L. 2005; Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids Res 33:3875–3896 [CrossRef]
    [Google Scholar]
  32. Jensen K. F. 1993; The Escherichia coli ‘wild types’ W3110 and MG1655 have rph frame shift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407
    [Google Scholar]
  33. Jones D. T., Taylor W. R., Thornton J. M. 1992; The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282
    [Google Scholar]
  34. Kędzierska B., Glinkowska M., Iwanicki A., Obuchowski M., Sojka P., Thomas M. S., Węgrzyn G. 2003; Toxicity of the bacteriophage λ cII gene product to Escherichia coli arises from inhibition of host cell DNA replication. Virology 4313:622–628
    [Google Scholar]
  35. Konieczny I., Marszalek J. 1995; The requirement for molecular chaperones in λ DNA replication is reduced by the mutation π in λ P gene, which weakens the interaction between λ P protein and DnaB helicase. J Biol Chem 270:9792–9799 [CrossRef]
    [Google Scholar]
  36. Krishnakumar R., Craig M., Imlay J. A., Slauch J. M. 2004; Differences in enzymatic properties allow SodCI but not SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium strain 14028. J Bacteriol 186:5230–5238 [CrossRef]
    [Google Scholar]
  37. Kur J., Gorska I., Taylor K. 1987; Escherichia coli dnaA initiation function is required for replication of plasmids derived from coliphage lambda. J Mol Biol 198:203–210 [CrossRef]
    [Google Scholar]
  38. Lawley T. D., Chan K., Thompson L. J., Kim C. C., Govoni G. R., Monack D. M. 2006; Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2:e11 [CrossRef]
    [Google Scholar]
  39. Lerat E., Daubin V., Moran N. A. 2003; From gene trees to organismal phylogeny in prokaryotes: the case of the γ -proteobacteria. PLoS Biol 1:e19
    [Google Scholar]
  40. Liberek K., Georgopoulos C., Zylicz M. 1988; Role of the Escherichia coli DnaK and DnaJ heat shock proteins in the initiation of bacteriophage λ DNA replication. Proc Natl Acad Sci U S A 85:6632–6636 [CrossRef]
    [Google Scholar]
  41. Lipińska B., Fayet O., Baird L., Georgopoulos C. 1989; Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 171:1574–1584
    [Google Scholar]
  42. Ludlam A. V., McNatt M. W., Carr K. M., Kaguni J. M. 2001; Essential amino acids of Escherichia coli DnaC protein in an N-terminal domain interact with DnaB helicase. J Biol Chem 276:27345–27353 [CrossRef]
    [Google Scholar]
  43. Mallory J. B., Alfano C., McMacken R. 1990; Host virus interactions in the initiation of bacteriophage λ DNA replication. Recruitment of Escherichia coli DnaB helicase by λ P replication protein. J Biol Chem 265:13297–13307
    [Google Scholar]
  44. Maiorano D., Lutzmann M., Mechali M. 2006; MCM proteins and DNA replication. Curr Opin Cell Biol 18:130–136 [CrossRef]
    [Google Scholar]
  45. McClelland M., Sanderson K. E., Spieth J., Clifton S. W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M. other authors 2001; Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856 [CrossRef]
    [Google Scholar]
  46. Miao E. A., Miller S. I. 2000; A conserved amino acid sequence directing intracellular type III secretion by Salmonella Typhimurium. Proc Natl Acad Sci U S A 97:7539–7544 [CrossRef]
    [Google Scholar]
  47. Moran N. A., Mira A. 2001; The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol 2: RESEARCH0054
    [Google Scholar]
  48. Murotsu T., Matsubara K. 1980; Role of an autorepression system in the control of λ dv plasmid copy number and incompatibility. Mol Gen Genet 179:509–519 [CrossRef]
    [Google Scholar]
  49. Mushegian A. R., Koonin E. V. 1996; A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A 93:10268–10271 [CrossRef]
    [Google Scholar]
  50. Nakayama N., Bond M. W., Miyajima A., Koborin J., Arai K. 1987; Structure of Escherichia coli dnaC. J Biol Chem 262:10475–10480
    [Google Scholar]
  51. Pearson W. R. 1996; Effective protein sequence comparison. Methods Enzymol 266:227–258
    [Google Scholar]
  52. Potrykus K., Wrobel B., Wegrzyn A., Wegrzyn G. 2000; Replication of oriJ -based plasmid DNA during the stringent and relaxed responses of Escherichia coli. Plasmid 44:111–126 [CrossRef]
    [Google Scholar]
  53. Potrykus K., Baranska S., Węgrzyn A., Węgrzyn G. 2002; Composition of the λ plasmid heritable replication complex. Biochem J 364:857–862 [CrossRef]
    [Google Scholar]
  54. Ptashne M. 1992 A Genetic Switch: Phage λ and Higher Organisms Cambridge, MA: Cell Press and Blackwell Scientific;
    [Google Scholar]
  55. Rice P., Longden I., Bleasby A. 2000; emboss: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277 [CrossRef]
    [Google Scholar]
  56. Sandler S. J. 2000; Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. Genetics 155:487–497
    [Google Scholar]
  57. Sanjuán R., Wróbel B. 2005; Weighted least-squares likelihood ratio test for branch testing in phylogenies reconstructed from distance measures. Syst Biol 54:218–229 [CrossRef]
    [Google Scholar]
  58. Sansone A., Watson P. R., Wallis T. S., Langford P. R., Kroll J. S. 2002; The role of two periplasmic copper- and zinc-cofactored superoxide dismutases in the virulence of Salmonella choleraesuis. Microbiology 148:719–726
    [Google Scholar]
  59. Schicklmaier P., Schmieger H. 1997; Sequence comparison of the genes for immunity, DNA replication, and cell lysis of the P22-related Salmonella phages ES18 and L. Gene 195:93–100 [CrossRef]
    [Google Scholar]
  60. Shigenobu S., Watanabe H., Hattori M., Sakaki Y., Ishikawa H. 2000; Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86 [CrossRef]
    [Google Scholar]
  61. Słomińska M., Konopa G., Barańska S., Węgrzyn G., Węgrzyn A. 2003; Interplay between DnaA and SeqA proteins during regulation of bacteriophage λ p R promoter activity. J Mol Biol 329:59–68 [CrossRef]
    [Google Scholar]
  62. Soultanas P. 2002; A functional interaction between the putative primosomal protein DnaI and the main replicative DNA helicase DnaB in Bacillus. Nucleic Acids Res 30:966–974 [CrossRef]
    [Google Scholar]
  63. Stanley T. L., Ellermeier C. D., Slauch J. M. 2000; Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovar Typhimurium survival in Peyer's patches. J Bacteriol 182:4406–4413 [CrossRef]
    [Google Scholar]
  64. Taylor K., Węgrzyn G. 1995; Replication of coliphage λ DNA. FEMS Microbiol Rev 17:109–119 [CrossRef]
    [Google Scholar]
  65. Thomas M. S., Glass R. E. 1991; Escherichia coli rpoA mutation which impairs transcription from positively regulated systems. Mol Microbiol 5:2719–2725 [CrossRef]
    [Google Scholar]
  66. Tsurimoto T., Matsubara K. 1981a; Purified bacteriophage λ O protein binds to four repeating sequences at the λ replication origin. Nucleic Acids Res 9:1789–1799 [CrossRef]
    [Google Scholar]
  67. Tsurimoto T., Matsubara K. 1981b; Purification of bacteriophage λ O protein that specifically binds to the origin of replication. Mol Gen Genet 181:325–331 [CrossRef]
    [Google Scholar]
  68. Velten M., McGovern S., Marsin S., Ehrlich S. D., Noirot P., Polard P. 2003; A two-protein strategy for the functional loading of a cellular replicative DNA helicase. Mol Cell 11:1009–1020 [CrossRef]
    [Google Scholar]
  69. Wahle E., Lasken R. S., Kornberg A. 1989a; The dnaB–dnaC replication protein complex of Escherichia coli . I. Formation and properties. J Biol Chem 264:2463–2468
    [Google Scholar]
  70. Wahle E., Lasken R. S., Kornberg A. 1989b; The dnaB–dnaC replication protein complex of Escherichia coli . II. Role of the complex in mobilizing dnaB functions. J Biol Chem 264:2469–2475
    [Google Scholar]
  71. Węgrzyn G. 1995; Amplification of λ plasmids in Escherichia coli relA mutants. J Biotechnol 43:139–143 [CrossRef]
    [Google Scholar]
  72. Węgrzyn G. 1999; Replication of plasmids during bacterial response to amino acid starvation. Plasmid 41:1–16 [CrossRef]
    [Google Scholar]
  73. Węgrzyn A., Węgrzyn G. 2001; Inheritance of the replication complex: a unique or common phenomenon in the control of DNA replication?. Arch Microbiol 175:86–93 [CrossRef]
    [Google Scholar]
  74. Węgrzyn G., Węgrzyn A. 2002; Stress responses and replication of plasmids in bacterial cells. Microb Cell Fact 1:2 [CrossRef]
    [Google Scholar]
  75. Węgrzyn G., Węgrzyn A. 2005; Genetic switches during bacteriophage λ development. Prog Nucleic Acid Res Mol Biol 79:1–48
    [Google Scholar]
  76. Węgrzyn G., Neubauer P., Krueger S., Hecker M., Taylor K. 1991; Stringent control of replication of plasmids derived from coliphage λ. Mol Gen Genet 225:94–98
    [Google Scholar]
  77. Węgrzyn G., Węgrzyn A., Pankiewicz A., Taylor K. 1996; Allele specificity of the Escherichia coli dnaA gene function in the replication of plasmids derived from phage λ. Mol Gen Genet 252:580–586
    [Google Scholar]
  78. Wickner S. H. 1979; DNA replication proteins of Escherichia coli and phage λ. Cold Spring Harb Symp Quant Biol 43:303–310 [CrossRef]
    [Google Scholar]
  79. Wold M. S., Mallory J. B., Roberts J. D., LeBowitz J. H., McMacken R. 1982; Initiation of bacteriophage λ DNA replication in vitro with purified λ replication proteins. Proc Natl Acad Sci U S A 79:6176–6180 [CrossRef]
    [Google Scholar]
  80. Worley M. J., Ching K. H., Heffron F. 2000; Salmonella SsrB activates a global regulon of horizontally acquired genes. Mol Microbiol 36:749–761
    [Google Scholar]
  81. Wróbel B., Węgrzyn G. 2002; Evolution of lambdoid replication modules. Virus Genes 24:163–171 [CrossRef]
    [Google Scholar]
  82. Wróbel B., Murphy H., Cashel M., Wegrzyn G. 1998a; Guanosine tetraphosphate (ppGpp)-mediated inhibition of the bacteriophage λp R promoter activity in Escherichia coli. Mol Gen Genet 257:490–495 [CrossRef]
    [Google Scholar]
  83. Wróbel B., Śrutkowska S., Węgrzyn G. 1998b; A lambdoid phage isolated from cultures of the commonly used Escherichia coli K-12 stringent/relaxed strains CP78/CP79 after spontaneous prophage induction. Acta Biochim Pol 45:251–259
    [Google Scholar]
  84. Yochem J., Uchida H., Sunshine M., Saito H., Georgopoulos C. P., Feiss M. 1978; Genetic analysis of two genes, dnaJ and dnaK , necessary for Escherichia coli and bacteriophage λ DNA replication. Mol Gen Genet 164:9–14 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000802-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000802-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed