1887

Abstract

Recent studies with have suggested that homologues of the heat-shock sigma factor, RpoH, may not be involved in the heat-shock response in this -proteobacterium. The genome of another -proteobacterium, , which is considered to be a representative of the Fe(III)-reducing that predominate in a diversity of subsurface environments, contains an homologue. Characterization of the homologue revealed that it was induced by a temperature shift from 30 °C to 42 °C and that an -deficient mutant was unable to grow at 42 °C. The predicted heat-shock genes, , , , and , were heat-shock inducible in an -dependent manner, and comparison of promoter regions of these genes identified the consensus sequences for the −10 and −35 promoter elements. In addition, DNA elements identical to the CIRCE consensus sequence were found in promoters of , and , suggesting that these genes are regulated by a homologue of the repressor HrcA, which is known to bind the CIRCE element. These results suggest that the RpoH homologue is the heat-shock sigma factor and that heat-shock response in is regulated positively by RpoH as well as negatively by the HrcA/CIRCE system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000638-0
2007-03-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/838.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000638-0&mimeType=html&fmt=ahah

References

  1. Arrigo, A. P. & Iandry, J. ( 1994; ). The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  2. Bond, D. R. & Lovley, D. R. ( 2003; ). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69, 1548–1555.[CrossRef]
    [Google Scholar]
  3. Bond, D. R., Holmes, D. E., Tender, L. M. & Lovley, D. R. ( 2002; ). Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485.[CrossRef]
    [Google Scholar]
  4. Caccavo, F., Jr, Lonergan, D. J., Lovley, D. R., Davis, M., Stolz, J. F. & McInerney, M. J. ( 1994; ). Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60, 3752–3759.
    [Google Scholar]
  5. Chhabra, S. R., He, Q., Huang, K. H., Gaucher, S. P., Alm, E. J., He, Z., Hadi, M. Z., Hazen, T. C., Wall, J. D. & other authors ( 2006; ). Global analysis of heat shock response in Desulfovibrio vulgaris Hidenborough. J Bacteriol 188, 1817–1828.[CrossRef]
    [Google Scholar]
  6. Coppi, M. V., Leang, C., Sandler, S. J. & Lovley, D. R. ( 2001; ). Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67, 3180–3187.[CrossRef]
    [Google Scholar]
  7. Gross, C. A. ( 1996; ). Function and regulation of the heat shock proteins. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, pp. 1382–1399. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  8. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  9. Harley, C. B. & Reynolds, R. P. ( 1987; ). Analysis of E. coli promoter sequences. Nucleic Acids Res 15, 2343–2361.[CrossRef]
    [Google Scholar]
  10. Hawley, D. K. & McClure, W. R. ( 1983; ). Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11, 2237–2255.[CrossRef]
    [Google Scholar]
  11. Hecker, M., Schumann, W. & Volker, U. ( 1996; ). Heat-shock and stress response in Bacillus subtilis. Mol Microbiol 19, 417–428.[CrossRef]
    [Google Scholar]
  12. Hengge-Aronis, R. ( 2002; ). Recent insights into the general stress response regulatory network in Escherichia coli. J Mol Microbiol Biotechnol 4, 341–346.
    [Google Scholar]
  13. Kovach, M. E., Phillips, R. W., Elzer, P. H., Roop, R. M., II & Peterson, K. M. ( 1994; ). pBBR1MCS: a broad-host-range cloning vector. BioTechniques 16, 800–802.
    [Google Scholar]
  14. Lindquist, S. & Craig, E. A. ( 1998; ). The heat-shock proteins. Annu Rev Genet 22, 631–677.
    [Google Scholar]
  15. Lloyd, J. R. & Lovley, D. R. ( 2001; ). Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12, 248–253.[CrossRef]
    [Google Scholar]
  16. Lovley, D. R. ( 1997; ). Microbial Fe(III) reduction in subsurface environments. FEMS Microbial Rev 20, 305–313.[CrossRef]
    [Google Scholar]
  17. Lovley, D. R. ( 2003; ). Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1, 35–44.[CrossRef]
    [Google Scholar]
  18. Lovley, D. R. ( 2006a; ). Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17, 327–332.[CrossRef]
    [Google Scholar]
  19. Lovley, D. R. ( 2006b; ). Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4, 497–508.[CrossRef]
    [Google Scholar]
  20. Lovley, D. R. & Coates, J. D. ( 1997; ). Bioremediation of metal contamination. Curr Opin Biotechnol 8, 285–289.[CrossRef]
    [Google Scholar]
  21. Lovley, D. R. & Coates, J. D. ( 2000; ). Novel forms of anaerobic respiration of environmental relevance. Curr Opin Microbiol 3, 252–256.[CrossRef]
    [Google Scholar]
  22. Lovley, D. R., Holmes, D. E. & Nevin, K. P. ( 2004; ). Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49, 219–286.
    [Google Scholar]
  23. Marx, C. J. & Lidstrom, M. E. ( 2001; ). Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology 147, 2065–2075.
    [Google Scholar]
  24. Methé, B. A., Nelson, K. E., Eisen, J. A., Paulsen, I. T., Nelson, W., Heidelberg, J. F., Wu, D., Wu, M., Ward, N. & other authors ( 2003; ). Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302, 1967–1969.[CrossRef]
    [Google Scholar]
  25. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Mogk, A., Homuth, G., Scholz, C., Kim, L., Schmid, F. X. & Schumann, W. ( 1997; ). The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16, 4579–4590.[CrossRef]
    [Google Scholar]
  27. Nakahigashi, K., Yanagi, H. & Yura, T. ( 1995; ). Isolation and sequence analysis of rpoH genes encoding σ 32 from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res 23, 4384–4390.
    [Google Scholar]
  28. Nakahigashi, K., Ron, E. Z., Yanagi, H. & Yura, T. ( 1999; ). Differential and independent roles of a σ 32 homolog (RpoH) and an HrcA repressor in the heat shock response of Agrobacterium tumefaciens. J Bacteriol 181, 7509–7515.
    [Google Scholar]
  29. Narberhaus, F. ( 1999; ). Negative regulation of bacterial heat shock genes. Mol Microbiol 31, 1–8.[CrossRef]
    [Google Scholar]
  30. Narberhaus, F., Giebeler, K. & Bahl, H. ( 1992; ). Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. J Bacteriol 174, 3290–3299.
    [Google Scholar]
  31. Narberhaus, F., Krummenacher, P., Fischer, H. M. & Hennecke, H. ( 1997; ). Three disparately regulated genes for σ 32–like transcription factors in Bradyrhizobium japonicum. Mol Microbiol 24, 93–104.[CrossRef]
    [Google Scholar]
  32. Núñez, C., Adams, L., Childers, S. & Lovley, D. R. ( 2004; ). The RpoS sigma factor in the dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens. J Bacteriol 186, 5543–5546.[CrossRef]
    [Google Scholar]
  33. Reisenauer, A., Mohr, C. D. & Shapiro, L. ( 1996; ). Regulation of the heat shock σ 32 homolog in Caulobacter crescentus. J Bacteriol 178, 1919–1927.
    [Google Scholar]
  34. Riggs, D. L., Cox, M. B., Cheung-Flynn, J., Prapapanich, V., Carrigan, P. E. & Smith, D. F. ( 2004; ). Functional specificity of co-chaperone interactions with Hsp90 client proteins. Crit Rev Biochem Mol Biol 39, 279–295.[CrossRef]
    [Google Scholar]
  35. Roberts, R. C., Toochinda, C., Avedissian, M., Baldini, R. L., Gomes, S. L. & Shapiro, L. ( 1996; ). Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. J Bacteriol 178, 1829–1841.
    [Google Scholar]
  36. Rodionov, D. A., Dubchak, I., Arkin, A., Alm, E. & Gelfand, M. S. ( 2004; ). Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria. Genome Biol 5, R90.[CrossRef]
    [Google Scholar]
  37. Rosen, R. & Ron, E. Z. ( 2002; ). Proteome analysis in the study of the bacterial heat-shock response. Mass Spectrom Rev 21, 244–265.[CrossRef]
    [Google Scholar]
  38. Sandler, S. J. & Clark, A. J. ( 1994; ). RecOR suppression of recF mutant phenotypes in Escherichia coli K-12. J Bacteriol 176, 3661–3672.
    [Google Scholar]
  39. Schulz, A. & Schumann, W. ( 1996; ). hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 178, 1088–1093.
    [Google Scholar]
  40. Schumann, W. ( 2000; ). Function and regulation of temperature-inducible bacterial proteins on the cellular metabolism. Adv Biochem Eng Biotechnol 67, 1–33.
    [Google Scholar]
  41. Schumann, W. ( 2003; ). The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones 8, 207–217.[CrossRef]
    [Google Scholar]
  42. Servant, P. & Mazodier, P. ( 2001; ). Negative regulation of the heat shock response in Streptomyces. Arch Microbiol 176, 237–242.[CrossRef]
    [Google Scholar]
  43. Spohn, G., Danielli, A., Roncarati, D., Delany, I., Rappuoli, R. & Scarlato, V. ( 2004; ). Dual control of Helicobacter pylori heat shock gene transcription by HspR and HrcA. J Bacteriol 186, 2956–2965.[CrossRef]
    [Google Scholar]
  44. Taylor, W. E., Straus, D. B., Grossman, A. D., Burton, Z. F., Gross, C. A. & Burgess, R. R. ( 1984; ). Transcription from a heat-inducible promoter causes heat shock regulation of the sigma subunit of E. coli RNA polymerase. Cell 38, 371–381.[CrossRef]
    [Google Scholar]
  45. Ueki, T. & Inouye, S. ( 2001; ). SigB, SigC, and SigE from Myxococcus xanthus homologues to sigma 32 are not required for heat shock response but for multicellular differentiation. J Mol Microbiol Biotechnol 3, 287–293.
    [Google Scholar]
  46. Ueki, T. & Inouye, S. ( 2002; ). Transcriptional activation of a heat-shock gene, lonD, of Myxococcus xanthus by a two component histidine-aspartate phosphorelay system. J Biol Chem 277, 6170–6177.[CrossRef]
    [Google Scholar]
  47. Ueki, T. & Inouye, S. ( 2005; ). Identification of a gene involved in polysaccharide export as a transcription target of FruA, an essential factor for Myxococcus xanthus development. J Biol Chem 280, 32279–32284.[CrossRef]
    [Google Scholar]
  48. Wetzstein, M., Volker, U., Dedio, J., Lobau, S., Zuber, U., Schiesswohl, M., Herget, C., Hecker, M. & Schumann, W. ( 1992; ). Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J Bacteriol 174, 3300–3310.
    [Google Scholar]
  49. Wu, J. & Newton, A. ( 1996; ). Isolation, identification, and transcriptional specificity of the heat shock sigma factor σ 32 from Caulobacter crescentus. J Bacteriol 178, 2094–2101.
    [Google Scholar]
  50. Yan, B., Núñez, C., Ueki, T., Esteve-Núñez, A., Puljic, M., Adkins, R. M., Methé, B. A., Lovley, D. R. & Krushkal, J. ( 2006; ). Computational prediction of RpoS and RpoD regulatory sites in Geobacter sulfurreducens using sequence and gene expression information. Gene 384, 73–95.[CrossRef]
    [Google Scholar]
  51. Young, J. C., Agashe, V. R., Siegers, K. & Hartl, F. U. ( 2004; ). Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5, 781–791.[CrossRef]
    [Google Scholar]
  52. Yura, T., Kanemori, M. & Morita, M. T. ( 2000; ). The heat shock response: regulation and function. In Bacterial Stress Responses, pp. 3–18. Edited by G. Storz & R. Hengge-Aronis. Washington, DC: American Society for Microbiology.
  53. Zhang, X., Beuron, F. & Freemont, P. S. ( 2002; ). Machinery of protein folding and unfolding. Curr Opin Struct Biol 12, 231–238.[CrossRef]
    [Google Scholar]
  54. Zuber, U. & Schumann, W. ( 1994; ). CIRCE, a novel heat-shock element involved in regulation of heat-shock operon dnaK of Bacillus subtilis. J Bacteriol 176, 1359–1363.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000638-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000638-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error