Macrophage-specific genes: identification by green fluorescent protein and kanamycin resistance selection Free

Abstract

survives and multiplies inside macrophages of its host by modulating the expression of several genes essential for survival. An expression system has been developed, based on green fluorescent protein and kanamycin resistance, to identify genes which appear to be up-regulated in infected macrophages. A promoter-trap shuttle vector, pLL192, was constructed, containing a streptomycin resistance gene as selection marker and an artificial bicistronic operon composed of the promoterless green fluorescent protein () gene, followed by the kanamycin resistance gene. A unique HI site upstream of the gene allowed for insertion of promoter libraries. The vector was validated by the use of known regulated or constitutive promoters. In addition, an genomic DNA library was inserted into pLL192 and then introduced into BCG. The recombinant BCG cells were then used to infect the J774A.1 murine macrophage-like cell line in the presence of kanamycin. Several recombinant BCG cells were thereby selected that were resistant to kanamycin within infected macrophages, but were sensitive to kanamycin when grown . The kanamycin resistance phenotype was paralleled by the fluorescence phenotype. After nucleotide sequencing, the corresponding genes were identified as , PE_PGRS63(RV3097c), Rv2232, Rv1026, Rv1635c, , Rv2231(C) and Rv0997. Real-time PCR analysis using RNA isolated at various time points from and BCG grown and within macrophages, confirmed the up-regulation of these genes. The level of up-regulation varied from 2- to 40-fold in macrophages compared to growth .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000547-0
2007-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/659.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000547-0&mimeType=html&fmt=ahah

References

  1. Arruda S., Bomfim G., Knights R., Huima-Byron T., Riley L. W. 1993; Cloning of an Mycobacterium tuberculosis DNA fragment associated with entry and survival inside cells. Science 261:1454–1457 [CrossRef]
    [Google Scholar]
  2. Barker L. P., Brooks D. M., Small P. L. C. 1998; The identification of Mycobacterium marinum genes differentially expressed in macrophage phagosomes using promoter fusions to green fluorescent protein. Mol Microbiol 29:1167–1177 [CrossRef]
    [Google Scholar]
  3. Baulard A., Kremer L., Locht C. 1996; Efficient homologous recombination in fast-growing and slow-growing mycobacteria. J Bacteriol 178:3091–3098
    [Google Scholar]
  4. Butterton J. R., Calderwood S. B. 1994; Identification, cloning, and sequencing of a gene required for ferric vibriobactin utilization by Vibrio cholerae . J Bacteriol 176:5631–5638
    [Google Scholar]
  5. Camacho L. R., Ensergueix D., Perez E., Gicquel B., Guilhot C. 1999; Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267 [CrossRef]
    [Google Scholar]
  6. Chiang S. L., Mekalanos J. J., Holden D. W. 1999; In vivo genetic analysis of bacterial virulence. Annu Rev Microbiol 53:129–154 [CrossRef]
    [Google Scholar]
  7. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  8. Deb D. K., Dahiya P., Srivastava K. K., Srivastava R., Srivastava B. S. 2002; Selective identification of new therapeutic targets of Mycobacterium tuberculosis by IVIAT approach. Tuberculosis (Edinb) 82:175–182 [CrossRef]
    [Google Scholar]
  9. De Voss J. J., Rutter K., Schroeder B. G., Barry C. E. III: 1999; Iron acquisition and metabolism by mycobacteria. J Bacteriol 181:4443–4451
    [Google Scholar]
  10. Dubnau E., Fontan P., Manganelli R., Soares-Appel S., Smith I. 2002; Mycobacterium tuberculosis genes induced during infection of human macrophages. Infect Immun 70:2787–2795 [CrossRef]
    [Google Scholar]
  11. Graham J. E., Clark-Curtiss J. E. 1999; Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS. Proc Natl Acad Sci U S A 96:11554–11559 [CrossRef]
    [Google Scholar]
  12. Harth G., Horwitz M. A. 1999; An inhibitor of exported Mycobacterium tuberculosis glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets. J Exp Med 189:1425–1436 [CrossRef]
    [Google Scholar]
  13. Hobson R. J., McBride A. J., Kempsell K. E., Dale J. W. 2002; Use of an arrayed promoter-probe library for the identification of macrophage-regulated genes in Mycobacterium tuberculosis . Microbiology 148:1571–1579
    [Google Scholar]
  14. Jacobs W. R. Jr, Kalpana G. V., Cirillo J. D., Pascopella L., Snapper S. B., Udani R. A., Jones W., Barletta R. G., Bloom B. R. 1991; Genetic systems for mycobacteria. Methods Enzymol 204:537–555
    [Google Scholar]
  15. Kremer L., Baulard A., Estaquier J., Poulain-Gotefroy O., Locht C. 1995; Green fluorescent protein as a new expression marker in mycobacteria. Mol Microbiol 17:913–922 [CrossRef]
    [Google Scholar]
  16. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the Method. Methods 25:402–408 [CrossRef]
    [Google Scholar]
  17. Mahan M. J., Slauch J. M., Mekalanos J. J. 1993; Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686–688 [CrossRef]
    [Google Scholar]
  18. Marmur J. A. 1961; Procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  19. Maurin M., Raoult D. 2001; Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob Agents Chemother 45:2977–2986 [CrossRef]
    [Google Scholar]
  20. McKinney J. D., Honer zu Bentrup K., Munoz-Elias E. J., Miczak A., Chen B., Chan W. T., Swenson D., Sacchettini J. C., Russell D. G., Jacobs W. R. Jr. 2000; Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738 [CrossRef]
    [Google Scholar]
  21. Payton M., Auty R., Delgoda R., Everett M., Sim E. 1999; Cloning and characterization of arylamine N -acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis : increased expression results in isoniazid resistance. J Bacteriol 181:1343–1347
    [Google Scholar]
  22. Plum G., Clark-Curtiss J. E. 1994; Induction of Mycobacterium avium gene expression following phagocytosis by human macrophages. Infect Immun 62:476–483
    [Google Scholar]
  23. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313 [CrossRef]
    [Google Scholar]
  24. Sassetti C. M., Boyd D. H., Rubin E. J. 2003; Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84 [CrossRef]
    [Google Scholar]
  25. Sauton B. 1912; Sur la nutrition minérale du bacilli tuberculeux. C R Acad Sci III Sci Vie 155:860–863
    [Google Scholar]
  26. Saviola B., Woolwine S. C., Bishai W. R. 2003; Isolation of acid-inducuble genes of Mycobacterium tuberculosis with the use of recombinase-based in vivo expression technology. Infect Immun 71:1379–1388 [CrossRef]
    [Google Scholar]
  27. Smith I. 2003; Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16:463–496 [CrossRef]
    [Google Scholar]
  28. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H. other authors 1991; New use of BCG for recombinant vaccines. Nature 351:456–460 [CrossRef]
    [Google Scholar]
  29. Talaat A. M., Lyons R., Howard S. T., Johnston S. A. 2004; The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci U S A 101:4602–4607 [CrossRef]
    [Google Scholar]
  30. Triccas J. A., Berthet F. X., Pelicic V., Gicquel B. 1999; Use of fluorescence induction and sucrose counterselection to identify Mycobacterium tuberculosis genes expressed within host cells. Microbiology 145:2923–2930
    [Google Scholar]
  31. WHO 1997 Anti-tuberculosis drug resistance in the world. The WHO/IUATLD Global Project on Anti-tuberculosis Drug Resistance Surveillance 1994–1997 (WHO/TB/97.229) Geneva: World Health Organization;
    [Google Scholar]
  32. Yuan Y., Crane D. D., Simpson R. M., Zhu Y. Q., Hickey M. J., Sherman D. R., Barry C. E. III 1998; The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc Natl Acad Sci U S A 95:9578–9583 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000547-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000547-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed