1887

Abstract

White-rot fungi secret a large number of hydrolytic and oxidative enzymes for degradation of lignocellulosic material. The sequencing of the genome of the white-rot fungus has facilitated the characterization of its complete extracellular proteome. was grown on liquid medium, containing glucose, cellulose or wood chips as the carbon source, and also in solid substrate fermentation bags. For liquid-grown cultures, the extracellular protein fraction was separated by 2D gel electrophoresis. Protein spots were analysed by in-gel digestion and liquid chromatography (LC)/MS/MS. A total of 18 additional protein spots from the 2D gels yielded hits from searches. From solid substrate cultures in which the fungus was grown in bags, the proteins were resolved by SDS-PAGE, subjected to in-gel digestion and then identified by LC/MS/MS. An additional 16 proteins yielded hits on searches. Enzymes involved in cellulose, hemicellulose, lignin and protein degradation were identified. Expression patterns were very similar between cellulose-grown cultures and wood-grown cultures. In addition to enzymes which act on lignocellulosic material, proteases were also found, indicating the need of fungi to scavenge for nitrogen in wood.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000513-0
2007-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3023.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000513-0&mimeType=html&fmt=ahah

References

  1. Abbas A., Koc H., Liu F., Tien M. 2005; Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr Genet 47:49–56
    [Google Scholar]
  2. Adler E. 1977; Lignin chemistry – past, present and future. Wood Sci Technol 11:169–218
    [Google Scholar]
  3. Bailey M. J., Biely P., Poutanen K. 1992; Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270
    [Google Scholar]
  4. Baker A. J. 1973; Effect of lignin on the in vitro digestibility of wood pulp. J Anim Sci 35:768–771
    [Google Scholar]
  5. Bednarska E., Lenartowska M., Niekras L. 2005; Localization of pectins and Ca2+ ions in unpollinated and pollinated wet ( Petunia hybrida Hort.) and dry ( Haemanthus albiflos L.) stigma. Folia Histochem Cytobiol 43:249–259
    [Google Scholar]
  6. Cancel A. M., Orth A. B., Tien M. 1993; Lignin and veratryl alcohol are not inducers of the ligninolytic system of Phanerochaete chrysosporium. Appl Environ Microbiol 59:2909–2913
    [Google Scholar]
  7. Crawford D. L., Crawford R. L. 1980; Microbial degradation of lignin. Enzyme Microb Technol 2:11–22
    [Google Scholar]
  8. Dass S. B., Dosoretz C. G., Reddy C. A., Grethlein H. E. 1995; Extracellular proteases produced by the wood-degrading fungus Phanerochaete chrysosporium under ligninolytic and non-ligninolytic conditions. Arch Microbiol 163:254–258
    [Google Scholar]
  9. Dobozi M. S., Szakacs G., Bruschi C. V. 1992; Xylanase activity of Phanerochaete chrysosporium. Appl Environ Microbiol 58:3466–3471
    [Google Scholar]
  10. Dosoretz C. G., Chen H. C., Grethlein H. E. 1990; Effect of environmental conditions on extracellular protease activity in lignolytic cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 56:395–400
    [Google Scholar]
  11. Dutton M. V., Kathiara M., Gallagher I. M., Evans C. S. 1994; Purification and characterization of oxalate decarboxylase from Coriolus versicolor. FEMS Microbiol Lett 116:321–325
    [Google Scholar]
  12. Farrell R. L., Murtagh K. E., Tien M., Mozuch M. D., Kirk T. K. 1989; Physical and enzymatic properties of lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Enzyme Microb Technol 11:322–328
    [Google Scholar]
  13. Green F. III, Kuster T. A., Highley T. L. 1996; Pectin degradation during colonization of wood by brown-rot fungi. Recent Research Developments in Plant Pathology 1:83–93
    [Google Scholar]
  14. Han S. O., Cho H. Y., Yukawa H., Inui M., Doi R. H. 2004; Regulation of expression of cellulosomes and noncellulosomal (hemi)cellulolytic enzymes in Clostridium cellulovorans during growth on different carbon sources. J Bacteriol 186:4218–4227
    [Google Scholar]
  15. Jellison J., Connolly J., Goodell B., Doyle B., Illman B., Fekete F., Ostrofsky A. 1997; The role of cations in the biodegradation of wood by the brown rot fungi. Int Biodeterior Biodegrad 39:165–179
    [Google Scholar]
  16. Keyser P., Kirk T. K., Zeikus J. G. 1978; Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J Bacteriol 135:790–797
    [Google Scholar]
  17. Kirk T. K., Cullen D. 1998 Enzymology and Molecular Genetics of Wood Degradation by White-Rot Fungi. Environmentally Friendly Technologies for the Pulp and Paper lndustry Hoboken, NJ: John Wiley & Sons;
  18. Kirk T. K., Farrell R. L. 1987; Enzymatic combustion: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505
    [Google Scholar]
  19. Kuan I. C., Johnson K. A., Tien M. 1993; Kinetic analysis of manganese peroxidase: the reaction with manganese complexes. J Biol Chem 268:20064–20070
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  21. Makela M., Galkin S., Hatakka A., Lundell T. 2002; Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microbial Technol 30:542–549
    [Google Scholar]
  22. Martinez D., Larrondo L. F., Putnam N., Gelpke M. D. S., Huang K., Chapman J., Helfenbein K. G., Ramaiya P., Detter J. C. other authors 2004; Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700
    [Google Scholar]
  23. Micales J. A. 1997; Localization and induction of oxalate decarboxylase in the brown-rot wood decay fungus Postia placenta. Int Biodeterior Biodegrad 39:125–132
    [Google Scholar]
  24. Miller G. L. 1959; Use of dinitrosalicilic acid reagent for determination of reducing sugars. Anal Chem 31:426–428
    [Google Scholar]
  25. Orth A. B., Royse D. J., Tien M. 1993; Ubiquity of lignin degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59:4017–4023
    [Google Scholar]
  26. Pease E. A., Tien M. 1992; Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. J Bacteriol 174:3532–3540
    [Google Scholar]
  27. Tien M. 1987; Properties of ligninase from Phanerochaete chrysosporium and their possible applications. Crit Rev Microbiol 15:141–168
    [Google Scholar]
  28. Tien M., Kirk T. K. 1988; Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249
    [Google Scholar]
  29. van Rensburg H., Anterola A. M., Levine L. H., Davin L. B., Lewis N. G. 2000; Monolignol compositional determinants in loblolly pine: aromatic amino acid metabolism and associated rate-limiting steps. In Lignin: Historical, Biological, and Materials Perspectives pp 118–144 Washington, DC: American Chemical Society;
    [Google Scholar]
  30. Van Soest P. J. 1994 The Nutritional Ecology of the Ruminant, 2nd edn. Ithaca, NY: Cornell University Press;
  31. Vanden Wymelenberg A., Sabat G., Martinez D., Rajangam A. S., Teeri T. T., Gaskell J., Kersten P. J., Cullen D. 2005; The Phanerochaete chrysosporium secretome: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. J Biotechnol 118:17–34
    [Google Scholar]
  32. Vanden Wymelenberg A., Minges P., Sabat G., Martinez D., Aerts A., Salamov A., Grigoriev I., Shapiro H., Putnam N. other authors 2006; Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol 43:343–356
    [Google Scholar]
  33. Wilson L. M., Howlett B. J. 2005; Leptosphaeria maculans, a fungal pathogen of Brassica napus, secretes a subtilisin-like serine protease. Eur J Plant Pathol 112:23–29
    [Google Scholar]
  34. Yano T., Ashida S., Tachiki T., Kumagai H., Tochikura T. 1991a; Development of a soft gel cultivation method. Agric Biol Chem 55:379–385
    [Google Scholar]
  35. Yano T., Ashida S., Tachiki T., Kumagai H., Tochikura T. 1991b; Production and localization of enzymes on soft gel cultivation. Agric Biol Chem 55:387–391
    [Google Scholar]
  36. Yoshida M., Igarashi K., Kawai R., Aida K., Samejima M. 2004; Differential transcription of β-glucosidase and cellobiose dehydrogenase genes in cellulose degradation by the basidiomycete Phanerochaete chrysosporium. FEMS Microbiol Lett 235:177–182
    [Google Scholar]
  37. Young H. E., Guinn V. P. 1966; Chemical elements in complete mature trees of 7 species in Maine. TAPPI (Tech Assoc Pulp Pap Ind ) 49:190–195
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000513-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000513-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error