1887

Abstract

is a member of the complex, a diverse family of Gram-negative bacteria that are serious respiratory pathogens in immunocompromised patients and individuals with cystic fibrosis. To identify putative bacterial virulence determinants, proteomic profiles were compared between two isolates that demonstrated differential persistence in a mouse model of pulmonary infection; clinical isolate C1394 is rapidly cleared from the murine lung whereas the strain variant, C1394mp2, persists. Two-dimensional (2D) gel electrophoresis was used to identify candidate proteins involved in survival in a susceptible host. The 2D proteome of the persistent isolate (C1394mp2) revealed loss of an alkyl hydroperoxide reductase subunit C (AhpC) protein spot and increased production of flagellin proteins. Loss of AhpC expression in C1394mp2 correlated with enhanced susceptibility to oxidative stress. C1394mp2 expressed increased flagellin production and enhanced swimming motility, traits that were subject to regulation by heat and low pH. Together, these results revealed differential expression and stress regulation of putative virulence determinants associated with persistence in a susceptible host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000455-0
2007-01-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/206.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000455-0&mimeType=html&fmt=ahah

References

  1. Aaron, S. D., Ferris, W., Henry, D. A., Speert, D. P. & Macdonald, N. E. ( 2000; ). Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderia cepacia. Am J Respir Crit Care Med 161, 1206–1212.[CrossRef]
    [Google Scholar]
  2. Aris, R. M., Routh, J. C., LiPuma, J. J., Heath, D. G. & Gilligan, P. H. ( 2001; ). Lung transplantation for cystic fibrosis patients with Burkholderia cepacia complex. Survival linked to genomovar type. Am J Respir Crit Care Med 164, 2102–2106.[CrossRef]
    [Google Scholar]
  3. Chen, L., Xie, Q. W. & Nathan, C. ( 1998; ). Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol Cell 1, 795–805.[CrossRef]
    [Google Scholar]
  4. Chernish, R. N. & Aaron, S. D. ( 2003; ). Approach to resistant gram-negative bacterial pulmonary infections in patients with cystic fibrosis. Curr Opin Pulm Med 9, 509–515.[CrossRef]
    [Google Scholar]
  5. Chu, K. K., Davidson, D. J., Halsey, T. K., Chung, J. W. & Speert, D. P. ( 2002; ). Differential persistence among genomovars of the Burkholderia cepacia complex in a murine model of pulmonary infection. Infect Immun 70, 2715–2720.[CrossRef]
    [Google Scholar]
  6. Chung, J. W., Altman, E., Beveridge, T. J. & Speert, D. P. ( 2003; ). Colonial morphology of Burkholderia cepacia complex genomovar III: implications in exopolysaccharide production, pilus expression, and persistence in the mouse. Infect Immun 71, 904–909.[CrossRef]
    [Google Scholar]
  7. Coakley, R. D., Grubb, B. R., Paradiso, A. M., Gatzy, J. T., Johnson, L. G., Kreda, S. M., O'Neal, W. K. & Boucher, R. C. ( 2003; ). Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc Natl Acad Sci U S A 100, 16083–16088.[CrossRef]
    [Google Scholar]
  8. Fischer, H., Widdicombe, J. H. & Illek, B. ( 2002; ). Acid secretion and proton conductance in human airway epithelium. Am J Physiol Cell Physiol 282, C736–C743.[CrossRef]
    [Google Scholar]
  9. Govan, J. R. & Deretic, V. ( 1996; ). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60, 539–574.
    [Google Scholar]
  10. Govan, J. R., Hughes, J. E. & Vandamme, P. ( 1996; ). Burkholderia cepacia: medical, taxonomic and ecological issues. J Med Microbiol 45, 395–407.[CrossRef]
    [Google Scholar]
  11. Hales, B. A., Morgan, J. A., Hart, C. A. & Winstanley, C. ( 1998; ). Variation in flagellin genes and proteins of Burkholderia cepacia. J Bacteriol 180, 1110–1118.
    [Google Scholar]
  12. Hancock, R. E. & Nikaido, H. ( 1978; ). Outer membranes of gram-negative bacteria. XIX. Isolation from Pseudomonas aeruginosa PAO1 and use in reconstitution and definition of the permeability barrier. J Bacteriol 136, 381–390.
    [Google Scholar]
  13. Hofmann, B., Hecht, H. J. & Flohe, L. ( 2002; ). Peroxiredoxins. Biol Chem 383, 347–364.
    [Google Scholar]
  14. Hutchison, M. L., Poxton, I. R. & Govan, J. R. ( 1998; ). Burkholderia cepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infect Immun 66, 2033–2039.
    [Google Scholar]
  15. LiPuma, J. J. ( 1998; ). Burkholderia cepacia. Management issues and new insights. Clin Chest Med 19, 473–486, vi.[CrossRef]
    [Google Scholar]
  16. Loprasert, S., Sallabhan, R., Whangsuk, W. & Mongkolsuk, S. ( 2003; ). Compensatory increase in ahpC gene expression and its role in protecting Burkholderia pseudomallei against reactive nitrogen intermediates. Arch Microbiol 180, 498–502.[CrossRef]
    [Google Scholar]
  17. Mahenthiralingam, E., Coenye, T., Chung, J. W., Speert, D. P., Govan, J. R., Taylor, P. & Vandamme, P. ( 2000; ). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38, 910–913.
    [Google Scholar]
  18. Mahenthiralingam, E., Vandamme, P., Campbell, M. E., Henry, D. A., Gravelle, A. M., Wong, L. T., Davidson, A. G., Wilcox, P. G., Nakielna, B. & Speert, D. P. ( 2001; ). Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans. Clin Infect Dis 33, 1469–1475.[CrossRef]
    [Google Scholar]
  19. Mahenthiralingam, E., Baldwin, A. & Vandamme, P. ( 2002; ). Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol 51, 533–538.
    [Google Scholar]
  20. Mahenthiralingam, E., Urban, T. A. & Goldberg, J. B. ( 2005; ). The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3, 144–156.[CrossRef]
    [Google Scholar]
  21. Martin, D. W. & Mohr, C. D. ( 2000; ). Invasion and intracellular survival of Burkholderia cepacia. Infect Immun 68, 24–29.[CrossRef]
    [Google Scholar]
  22. Maurer, L. M., Yohannes, E., Bondurant, S. S., Radmacher, M. & Slonczewski, J. L. ( 2005; ). pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187, 304–319.[CrossRef]
    [Google Scholar]
  23. McDougald, D., Gong, L., Srinivasan, S., Hild, E., Thompson, L., Takayama, K., Rice, S. A. & Kjelleberg, S. ( 2002; ). Defences against oxidative stress during starvation in bacteria. Antonie Van Leeuwenhoek 81, 3–13.[CrossRef]
    [Google Scholar]
  24. Miller, R. A. & Britigan, B. E. ( 1997; ). Role of oxidants in microbial pathophysiology. Clin Microbiol Rev 10, 1–18.
    [Google Scholar]
  25. Poschet, J., Perkett, E. & Deretic, V. ( 2002; ). Hyperacidification in cystic fibrosis: links with lung disease and new prospects for treatment. Trends Mol Med 8, 512–519.[CrossRef]
    [Google Scholar]
  26. Rabilloud, T. ( 1999; ). Silver staining of 2-D electrophoresis gels. Methods Mol Biol 112, 297–305.
    [Google Scholar]
  27. Sajjan, U. S., Sun, L., Goldstein, R. & Forstner, J. F. ( 1995; ). Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers. J Bacteriol 177, 1030–1038.
    [Google Scholar]
  28. Schwab, U., Leigh, M., Ribeiro, C., Yankaskas, J., Burns, K., Gilligan, P., Sokol, P. & Boucher, R. ( 2002; ). Patterns of epithelial cell invasion by different species of the Burkholderia cepacia complex in well-differentiated human airway epithelia. Infect Immun 70, 4547–4555.[CrossRef]
    [Google Scholar]
  29. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. ( 1996; ). Mass spectrometric sequencing of proteins in silver-stained polyacrylamide gels. Anal Chem 68, 850–858.[CrossRef]
    [Google Scholar]
  30. Smith, J. J., Travis, S. M., Greenberg, E. P. & Welsh, M. J. ( 1996; ). Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85, 229–236.[CrossRef]
    [Google Scholar]
  31. Sokol, P. A., Sajjan, U., Visser, M. B., Gingues, S., Forstner, J. & Kooi, C. ( 2003; ). The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. Microbiology 149, 3649–3658.[CrossRef]
    [Google Scholar]
  32. Speert, D. P., Henry, D., Vandamme, P., Corey, M. & Mahenthiralingam, E. ( 2002; ). Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 8, 181–187.[CrossRef]
    [Google Scholar]
  33. Springer, B., Master, S., Sander, P., Zahrt, T., McFalone, M., Song, J., Papavinasasundaram, K. G., Colston, M. J., Boettger, E. & Deretic, V. ( 2001; ). Silencing of oxidative stress response in Mycobacterium tuberculosis: expression patterns of ahpC in virulent and avirulent strains and effect of ahpC inactivation. Infect Immun 69, 5967–5973.[CrossRef]
    [Google Scholar]
  34. Taylor, P. D., Inchley, C. J. & Gallagher, M. P. ( 1998; ). The Salmonella typhimurium AhpC polypeptide is not essential for virulence in BALB/c mice but is recognized as an antigen during infection. Infect Immun 66, 3208–3217.
    [Google Scholar]
  35. Tomich, M., Herfst, C. A., Golden, J. W. & Mohr, C. D. ( 2002; ). Role of flagella in host cell invasion by Burkholderia cepacia. Infect Immun 70, 1799–1806.[CrossRef]
    [Google Scholar]
  36. Tomich, M., Griffith, A., Herfst, C. A., Burns, J. L. & Mohr, C. D. ( 2003; ). Attenuated virulence of a Burkholderia cepacia type III secretion mutant in a murine model of infection. Infect Immun 71, 1405–1415.[CrossRef]
    [Google Scholar]
  37. Tungpradabkul, S., Wajanarogana, S., Tunpiboonsak, S. & Panyim, S. ( 1999; ). PCR-RFLP analysis of the flagellin sequences for identification of Burkholderia pseudomallei and Burkholderia cepacia from clinical isolates. Mol Cell Probes 13, 99–105.[CrossRef]
    [Google Scholar]
  38. Urban, T. A., Griffith, A., Torok, A. M., Smolkin, M. E., Burns, J. L. & Goldberg, J. B. ( 2004; ). Contribution of Burkholderia cenocepacia flagella to infectivity and inflammation. Infect Immun 72, 5126–5134.[CrossRef]
    [Google Scholar]
  39. Visser, M. B., Majumdar, S., Hani, E. & Sokol, P. A. ( 2004; ). Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Infect Immun 72, 2850–2857.[CrossRef]
    [Google Scholar]
  40. Winstanley, C. & Morgan, J. A. ( 1997; ). The bacterial flagellin gene as a biomarker for detection, population genetics and epidemiological analysis. Microbiology 143, 3071–3084.[CrossRef]
    [Google Scholar]
  41. Winstanley, C., Detsika, M. G., Glendinning, K. J., Parsons, Y. N. & Hart, C. A. ( 2001; ). Flagellin gene PCR-RFLP analysis of a panel of strains from the Burkholderia cepacia complex. J Med Microbiol 50, 728–731.
    [Google Scholar]
  42. Zabner, J., Smith, J. J., Karp, P. H., Widdicombe, J. H. & Welsh, M. J. ( 1998; ). Loss of CFTR chloride channels alters salt absorption by cystic fibrosis airway epithelia in vitro. Mol Cell 2, 397–403.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000455-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000455-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error