1887

Abstract

Recently, a number of attenuated mutants of have been identified using a bioinformatics approach. One of the target genes identified in that study was , which the authors now characterized further. VagH shows homology to HemK of , possessing methyltransferase activity similar to that of HemK, and targeting release factors 1 and 2. Microarray studies comparing the wild-type and the mutant revealed that the mRNA levels of only a few genes were altered in the mutant. By proteome analysis, expression of the virulence determinant YopD was found to be increased, indicating a possible connection between VagH and the virulence plasmid-encoded type III secretion system (T3SS). Further analysis showed that Yop expression and secretion were repressed in a mutant. This phenotype could be suppressed by -complementation with the wild-type gene or by deletion of the negative regulator . Also, in a similar manner to a T3SS-negative mutant, the avirulent mutant was rapidly cleared from Peyer's patches and could not reach the spleen after oral infection of mice. In a manner analogous to that of T3SS mutants, the mutant could not block phagocytosis by macrophages. However, a mutant showed no defects in the T3SS-independent ability to proliferate intracellularly and replicated to levels similar to those of the wild-type in macrophages. In conclusion, the mutant exhibits a virulence phenotype similar to that of a T3SS-negative mutant, indicating a tight link between VagH and type III secretion in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000323-0
2007-05-01
2020-11-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1464.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000323-0&mimeType=html&fmt=ahah

References

  1. Bartra S., Cherepanov P., Forsberg A., Schesser K.. 2001; The Yersinia YopE and YopH type III effector proteins enhance bacterial proliferation following contact with eukaryotic cells. BMC Microbiol1:22[CrossRef]
    [Google Scholar]
  2. Buchrieser C., Prentice M., Carniel E.. 1998; The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. J Bacteriol180:2321–2329
    [Google Scholar]
  3. Buckingham R. H., Grentzmann G., Kisselev L.. 1997; Polypeptide chain release factors. Mol Microbiol24:449–456[CrossRef]
    [Google Scholar]
  4. Collyn F., Lety M. A., Nair S., Escuyer V., Ben Younes A., Simonet M., Marceau M.. 2002; Yersinia pseudotuberculosis harbors a type IV pilus gene cluster that contributes to pathogenicity. Infect Immun70:6196–6205[CrossRef]
    [Google Scholar]
  5. Colson C.. 1977; Genetics of ribosomal protein methylation in Escherichia coli . I. A mutant deficient in methylation of protein L11. Mol Gen Genet154:167–173[CrossRef]
    [Google Scholar]
  6. Cornelis G. R.. 2002; The Yersinia Ysc–Yop ‘type III’ weaponry. Nat Rev Mol Cell Biol3:742–752[CrossRef]
    [Google Scholar]
  7. Dincbas-Renqvist V., Engstrom A., Mora L., Heurgue-Hamard V., Buckingham R., Ehrenberg M.. 2000; A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J19:6900–6907[CrossRef]
    [Google Scholar]
  8. Francis M. S., Wolf-Watz H.. 1998; YopD of Yersinia pseudotuberculosis is translocated into the cytosol of HeLa epithelial cells: evidence of a structural domain necessary for translocation. Mol Microbiol29:799–813[CrossRef]
    [Google Scholar]
  9. Frolova L. Y., Tsivkovskii R. Y., Sivolobova G. F., Oparina N. Y., Serpinsky O. I., Blinov V. M., Tatkov S. I., Kisselev L. L.. 1999; Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA5:1014–1020[CrossRef]
    [Google Scholar]
  10. Garbom S., Forsberg A., Wolf-Watz H., Kihlberg B. M.. 2004; Identification of novel virulence-associated genes via genome analysis of hypothetical genes. Infect Immun72:1333–1340[CrossRef]
    [Google Scholar]
  11. Gemski P., Lazere J. R., Casey T., Wohlhieter J. A.. 1980; Presence of a virulence-associated plasmid in Yersinia pseudotuberculosis. Infect Immun28:1044–1047
    [Google Scholar]
  12. Grabenstein J. P., Marceau M., Pujol C., Simonet M., Bliska J. B.. 2004; The response regulator PhoP of Yersinia pseudotuberculosis is important for replication in macrophages and for virulence. Infect Immun72:4973–4984[CrossRef]
    [Google Scholar]
  13. Heurgue-Hamard V., Champ S., Engstrom A., Ehrenberg M., Buckingham R. H.. 2002; The hemK gene in Escherichia coli encodes the N (5)-glutamine methyltransferase that modifies peptide release factors. EMBO J21:769–778[CrossRef]
    [Google Scholar]
  14. Isberg R. R., Voorhis D. L., Falkow S.. 1987; Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell50:769–778[CrossRef]
    [Google Scholar]
  15. John M., Kudva I. T., Griffin R. W., Dodson A. W., McManus B., Krastins B., Sarracino D., Progulske-Fox A., Hillman J. D.. other authors 2005; Use of in vivo-induced antigen technology for identification of Escherichia coli O157 : H7 proteins expressed during human infection. Infect Immun73:2665–2679[CrossRef]
    [Google Scholar]
  16. Johnston C., Pegues D. A., Hueck C. J., Lee A., Miller S. I.. 1996; Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. Mol Microbiol22:715–727[CrossRef]
    [Google Scholar]
  17. Nakahigashi K., Kubo N., Narita S., Shimaoka T., Goto S., Oshima T., Mori M., Maeda M., Wada C., Inokuchi H.. 2002; HemK, a class of protein methyl transferase with similarity to DNA methyl transferases, methylates polypeptide chain release factors, and hemK knockout induces defects in translational termination. Proc Natl Acad Sci U S A99:1473–1478[CrossRef]
    [Google Scholar]
  18. Nakayashiki T., Nishimura K., Inokuchi H.. 1995; Cloning and sequencing of a previously unidentified gene that is involved in the biosynthesis of heme in Escherichia coli. Gene153:67–70[CrossRef]
    [Google Scholar]
  19. Park Y., Yilmaz O., Jung I. Y., Lamont R. J.. 2004; Identification of Porphyromonas gingivalis genes specifically expressed in human gingival epithelial cells by using differential display reverse transcription-PCR. Infect Immun72:3752–3758[CrossRef]
    [Google Scholar]
  20. Parkhill J., Wren B. W., Thomson N. R., Titball R. W., Holden M. T., Prentice M. B., Sebaihia M., James K. D., Churcher C.. other authors 2001; Genome sequence of Yersinia pestis , the causative agent of plague. Nature413:523–527[CrossRef]
    [Google Scholar]
  21. Pettersson J., Holmstrom A., Hill J., Leary S., Frithz-Lindsten E., Carlsson E., Titball R., Forsberg A., Wolf-Watz H., von Euler-Matell A.. 1999; The V-antigen of Yersinia is surface exposed before target cell contact and involved in virulence protein translocation. Mol Microbiol32:961–976[CrossRef]
    [Google Scholar]
  22. Polevoda B., Span L., Sherman F.. 2006; The yeast translation release factors Mrf1p and Sup45p (eRF1) are methylated, respectively, by the methyltransferases Mtq1p and Mtq2p. J Biol Chem281:2562–2571
    [Google Scholar]
  23. Pujol C., Bliska J. B.. 2003; The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect Immun71:5892–5899[CrossRef]
    [Google Scholar]
  24. Rakeman J. L., Bonifield H. R., Miller S. I.. 1999; A HilA-independent pathway to Salmonella typhimurium invasion gene transcription. J Bacteriol181:3096–3104
    [Google Scholar]
  25. Reed L. J., Muench H.. 1938; A simple method for estimating fifty percent endpoints. Am J Hyg27:493–497
    [Google Scholar]
  26. Robinson V. L., Oyston P. C., Titball R. W.. 2005; A dam mutant of Yersinia pestis is attenuated and induces protection against plague. FEMS Microbiol Lett252:251–256[CrossRef]
    [Google Scholar]
  27. Rosqvist R., Bolin I., Wolf-Watz H.. 1988; Inhibition of phagocytosis in Yersinia pseudotuberculosis : a virulence plasmid-encoded ability involving the Yop2b protein. Infect Immun56:2139–2143
    [Google Scholar]
  28. Rosqvist R., Forsberg A., Rimpilainen M., Bergman T., Wolf-Watz H.. 1990; The cytotoxic protein YopE of Yersinia obstructs the primary host defence. Mol Microbiol4:657–667[CrossRef]
    [Google Scholar]
  29. Rosqvist R., Forsberg A., Wolf-Watz H.. 1991; Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect Immun59:4562–4569
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Scolnick E., Tompkins R., Caskey T., Nirenberg M.. 1968; Release factors differing in specificity for terminator codons. Proc Natl Acad Sci U S A61:768–774[CrossRef]
    [Google Scholar]
  32. Stabler R. A., Hinds J., Witney A. A., Isherwood K., Oyston P., Titball R., Wren B., Hinchliffe S., Prentice M.. other authors 2003; Construction of a Yersinia pestis microarray. Adv Exp Med Biol529:47–49
    [Google Scholar]
  33. Taylor V. L., Titball R. W., Oyston P. C.. 2005; Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. Microbiology151:1919–1926[CrossRef]
    [Google Scholar]
  34. Uno M., Ito K., Nakamura Y.. 1996; Functional specificity of amino acid at position 246 in the tRNA mimicry domain of bacterial release factor 2. Biochimie78:935–943[CrossRef]
    [Google Scholar]
  35. Viboud G. I., Bliska J. B.. 2005; Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol59:69–89[CrossRef]
    [Google Scholar]
  36. Williams A. W., Straley S. C.. 1998; YopD of Yersinia pestis plays a role in negative regulation of the low-calcium response in addition to its role in translocation of Yops. J Bacteriol180:350–358
    [Google Scholar]
  37. Yang Y., Merriam J. J., Mueller J. P., Isberg R. R.. 1996; The psa locus is responsible for thermoinducible binding of Yersinia pseudotuberculosis to cultured cells. Infect Immun64:2483–2489
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000323-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000323-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error