1887

Abstract

Recently, a number of attenuated mutants of have been identified using a bioinformatics approach. One of the target genes identified in that study was , which the authors now characterized further. VagH shows homology to HemK of , possessing methyltransferase activity similar to that of HemK, and targeting release factors 1 and 2. Microarray studies comparing the wild-type and the mutant revealed that the mRNA levels of only a few genes were altered in the mutant. By proteome analysis, expression of the virulence determinant YopD was found to be increased, indicating a possible connection between VagH and the virulence plasmid-encoded type III secretion system (T3SS). Further analysis showed that Yop expression and secretion were repressed in a mutant. This phenotype could be suppressed by -complementation with the wild-type gene or by deletion of the negative regulator . Also, in a similar manner to a T3SS-negative mutant, the avirulent mutant was rapidly cleared from Peyer's patches and could not reach the spleen after oral infection of mice. In a manner analogous to that of T3SS mutants, the mutant could not block phagocytosis by macrophages. However, a mutant showed no defects in the T3SS-independent ability to proliferate intracellularly and replicated to levels similar to those of the wild-type in macrophages. In conclusion, the mutant exhibits a virulence phenotype similar to that of a T3SS-negative mutant, indicating a tight link between VagH and type III secretion in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000323-0
2007-05-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1464.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000323-0&mimeType=html&fmt=ahah

References

  1. Bartra, S., Cherepanov, P., Forsberg, A. & Schesser, K. ( 2001; ). The Yersinia YopE and YopH type III effector proteins enhance bacterial proliferation following contact with eukaryotic cells. BMC Microbiol 1, 22 [CrossRef]
    [Google Scholar]
  2. Buchrieser, C., Prentice, M. & Carniel, E. ( 1998; ). The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. J Bacteriol 180, 2321–2329.
    [Google Scholar]
  3. Buckingham, R. H., Grentzmann, G. & Kisselev, L. ( 1997; ). Polypeptide chain release factors. Mol Microbiol 24, 449–456.[CrossRef]
    [Google Scholar]
  4. Collyn, F., Lety, M. A., Nair, S., Escuyer, V., Ben Younes, A., Simonet, M. & Marceau, M. ( 2002; ). Yersinia pseudotuberculosis harbors a type IV pilus gene cluster that contributes to pathogenicity. Infect Immun 70, 6196–6205.[CrossRef]
    [Google Scholar]
  5. Colson, C. ( 1977; ). Genetics of ribosomal protein methylation in Escherichia coli. I. A mutant deficient in methylation of protein L11. Mol Gen Genet 154, 167–173.[CrossRef]
    [Google Scholar]
  6. Cornelis, G. R. ( 2002; ). The Yersinia Ysc–Yop ‘type III’ weaponry. Nat Rev Mol Cell Biol 3, 742–752.[CrossRef]
    [Google Scholar]
  7. Dincbas-Renqvist, V., Engstrom, A., Mora, L., Heurgue-Hamard, V., Buckingham, R. & Ehrenberg, M. ( 2000; ). A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J 19, 6900–6907.[CrossRef]
    [Google Scholar]
  8. Francis, M. S. & Wolf-Watz, H. ( 1998; ). YopD of Yersinia pseudotuberculosis is translocated into the cytosol of HeLa epithelial cells: evidence of a structural domain necessary for translocation. Mol Microbiol 29, 799–813.[CrossRef]
    [Google Scholar]
  9. Frolova, L. Y., Tsivkovskii, R. Y., Sivolobova, G. F., Oparina, N. Y., Serpinsky, O. I., Blinov, V. M., Tatkov, S. I. & Kisselev, L. L. ( 1999; ). Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5, 1014–1020.[CrossRef]
    [Google Scholar]
  10. Garbom, S., Forsberg, A., Wolf-Watz, H. & Kihlberg, B. M. ( 2004; ). Identification of novel virulence-associated genes via genome analysis of hypothetical genes. Infect Immun 72, 1333–1340.[CrossRef]
    [Google Scholar]
  11. Gemski, P., Lazere, J. R., Casey, T. & Wohlhieter, J. A. ( 1980; ). Presence of a virulence-associated plasmid in Yersinia pseudotuberculosis. Infect Immun 28, 1044–1047.
    [Google Scholar]
  12. Grabenstein, J. P., Marceau, M., Pujol, C., Simonet, M. & Bliska, J. B. ( 2004; ). The response regulator PhoP of Yersinia pseudotuberculosis is important for replication in macrophages and for virulence. Infect Immun 72, 4973–4984.[CrossRef]
    [Google Scholar]
  13. Heurgue-Hamard, V., Champ, S., Engstrom, A., Ehrenberg, M. & Buckingham, R. H. ( 2002; ). The hemK gene in Escherichia coli encodes the N(5)-glutamine methyltransferase that modifies peptide release factors. EMBO J 21, 769–778.[CrossRef]
    [Google Scholar]
  14. Isberg, R. R., Voorhis, D. L. & Falkow, S. ( 1987; ). Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50, 769–778.[CrossRef]
    [Google Scholar]
  15. John, M., Kudva, I. T., Griffin, R. W., Dodson, A. W., McManus, B., Krastins, B., Sarracino, D., Progulske-Fox, A., Hillman, J. D. & other authors ( 2005; ). Use of in vivo-induced antigen technology for identification of Escherichia coli O157 : H7 proteins expressed during human infection. Infect Immun 73, 2665–2679.[CrossRef]
    [Google Scholar]
  16. Johnston, C., Pegues, D. A., Hueck, C. J., Lee, A. & Miller, S. I. ( 1996; ). Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. Mol Microbiol 22, 715–727.[CrossRef]
    [Google Scholar]
  17. Nakahigashi, K., Kubo, N., Narita, S., Shimaoka, T., Goto, S., Oshima, T., Mori, M., Maeda, M., Wada, C. & Inokuchi, H. ( 2002; ). HemK, a class of protein methyl transferase with similarity to DNA methyl transferases, methylates polypeptide chain release factors, and hemK knockout induces defects in translational termination. Proc Natl Acad Sci U S A 99, 1473–1478.[CrossRef]
    [Google Scholar]
  18. Nakayashiki, T., Nishimura, K. & Inokuchi, H. ( 1995; ). Cloning and sequencing of a previously unidentified gene that is involved in the biosynthesis of heme in Escherichia coli. Gene 153, 67–70.[CrossRef]
    [Google Scholar]
  19. Park, Y., Yilmaz, O., Jung, I. Y. & Lamont, R. J. ( 2004; ). Identification of Porphyromonas gingivalis genes specifically expressed in human gingival epithelial cells by using differential display reverse transcription-PCR. Infect Immun 72, 3752–3758.[CrossRef]
    [Google Scholar]
  20. Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C. & other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  21. Pettersson, J., Holmstrom, A., Hill, J., Leary, S., Frithz-Lindsten, E., von Euler-Matell, A., Carlsson, E., Titball, R., Forsberg, A. & Wolf-Watz, H. ( 1999; ). The V-antigen of Yersinia is surface exposed before target cell contact and involved in virulence protein translocation. Mol Microbiol 32, 961–976.[CrossRef]
    [Google Scholar]
  22. Polevoda, B., Span, L. & Sherman, F. ( 2006; ). The yeast translation release factors Mrf1p and Sup45p (eRF1) are methylated, respectively, by the methyltransferases Mtq1p and Mtq2p. J Biol Chem 281, 2562–2571.
    [Google Scholar]
  23. Pujol, C. & Bliska, J. B. ( 2003; ). The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect Immun 71, 5892–5899.[CrossRef]
    [Google Scholar]
  24. Rakeman, J. L., Bonifield, H. R. & Miller, S. I. ( 1999; ). A HilA-independent pathway to Salmonella typhimurium invasion gene transcription. J Bacteriol 181, 3096–3104.
    [Google Scholar]
  25. Reed, L. J. & Muench, H. ( 1938; ). A simple method for estimating fifty percent endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  26. Robinson, V. L., Oyston, P. C. & Titball, R. W. ( 2005; ). A dam mutant of Yersinia pestis is attenuated and induces protection against plague. FEMS Microbiol Lett 252, 251–256.[CrossRef]
    [Google Scholar]
  27. Rosqvist, R., Bolin, I. & Wolf-Watz, H. ( 1988; ). Inhibition of phagocytosis in Yersinia pseudotuberculosis: a virulence plasmid-encoded ability involving the Yop2b protein. Infect Immun 56, 2139–2143.
    [Google Scholar]
  28. Rosqvist, R., Forsberg, A., Rimpilainen, M., Bergman, T. & Wolf-Watz, H. ( 1990; ). The cytotoxic protein YopE of Yersinia obstructs the primary host defence. Mol Microbiol 4, 657–667.[CrossRef]
    [Google Scholar]
  29. Rosqvist, R., Forsberg, A. & Wolf-Watz, H. ( 1991; ). Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect Immun 59, 4562–4569.
    [Google Scholar]
  30. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory.
  31. Scolnick, E., Tompkins, R., Caskey, T. & Nirenberg, M. ( 1968; ). Release factors differing in specificity for terminator codons. Proc Natl Acad Sci U S A 61, 768–774.[CrossRef]
    [Google Scholar]
  32. Stabler, R. A., Hinds, J., Witney, A. A., Isherwood, K., Oyston, P., Titball, R., Wren, B., Hinchliffe, S., Prentice, M. & other authors ( 2003; ). Construction of a Yersinia pestis microarray. Adv Exp Med Biol 529, 47–49.
    [Google Scholar]
  33. Taylor, V. L., Titball, R. W. & Oyston, P. C. ( 2005; ). Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. Microbiology 151, 1919–1926.[CrossRef]
    [Google Scholar]
  34. Uno, M., Ito, K. & Nakamura, Y. ( 1996; ). Functional specificity of amino acid at position 246 in the tRNA mimicry domain of bacterial release factor 2. Biochimie 78, 935–943.[CrossRef]
    [Google Scholar]
  35. Viboud, G. I. & Bliska, J. B. ( 2005; ). Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59, 69–89.[CrossRef]
    [Google Scholar]
  36. Williams, A. W. & Straley, S. C. ( 1998; ). YopD of Yersinia pestis plays a role in negative regulation of the low-calcium response in addition to its role in translocation of Yops. J Bacteriol 180, 350–358.
    [Google Scholar]
  37. Yang, Y., Merriam, J. J., Mueller, J. P. & Isberg, R. R. ( 1996; ). The psa locus is responsible for thermoinducible binding of Yersinia pseudotuberculosis to cultured cells. Infect Immun 64, 2483–2489.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000323-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000323-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error