1887

Abstract

FtsQ, an essential protein for the divisome assembly, is able to interact with various division proteins, namely FtsI, FtsL, FtsN, FtsB and FtsW. In this paper, the FtsQ domains involved in these interactions were identified by two-hybrid assays and co-immunoprecipitations. Progressive deletions of the gene suggested that the FtsQ self-interaction and its interactions with the other proteins are localized in three periplasmic subdomains: (i) residues 50–135 constitute one of the sites involved in FtsQ, FtsI and FtsN interaction, and this site is also responsible for FtsW interaction; (ii) the FtsB interaction is localized between residues 136 and 202; and (iii) the FtsL interaction is localized at the very C-terminal extremity. In this third region, the interaction site for FtsK and also the second site for FtsQ, FtsI, FtsN interactions are located. As far as FtsW is concerned, this protein interacts with the fragment of the FtsQ periplasmic domain that spans residues 67–75. In addition, two protein subdomains, one constituted by residues 1–135 and the other from 136 to the end, are both able to complement an null mutant. Finally, the unexpected finding that an null mutant can be complemented, at least transiently, by the / gene product suggests a new strategy for investigating the biological significance of protein–protein interactions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000265-0
2007-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/124.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000265-0&mimeType=html&fmt=ahah

References

  1. Bernhardt T. G., de Boer P. A. 2003; The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol 48:1171–1182 [CrossRef]
    [Google Scholar]
  2. Bi E. F., Lutkenhaus J. 1991; FtsZ ring structure associated with division in Escherichia coli . Nature 354:161–164 [CrossRef]
    [Google Scholar]
  3. Bowler L. D., Spratt B. G. 1989; Membrane topology of penicillin-binding protein 3 of Escherichia coli . Mol Microbiol 3:1277–1286 [CrossRef]
    [Google Scholar]
  4. Buddelmeijer N., Beckwith J. 2002; Assembly of cell division proteins at the E. coli cell center. Curr Opin Microbiol 5:553–557 [CrossRef]
    [Google Scholar]
  5. Buddelmeijer N., Beckwith J. 2004; A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region. Mol Microbiol 52:1315–1327 [CrossRef]
    [Google Scholar]
  6. Buddelmeijer N., Aarsman M. E., Kolk A. H., Vicente M., Nanninga N. 1998; Localization of cell division protein FtsQ by immunofluorescence microscopy in dividing and nondividing cells of Escherichia coli . J Bacteriol 180:6107–6116
    [Google Scholar]
  7. Carson M. J., Barondess J., Beckwith J. 1991; The FtsQ protein of Escherichia coli : membrane topology, abundance, and cell division phenotypes due to overproduction and insertion mutations. J Bacteriol 173:2187–2195
    [Google Scholar]
  8. Chen J. C., Beckwith J. 2001; FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. Mol Microbiol 42:395–413 [CrossRef]
    [Google Scholar]
  9. Chen J. C., Weiss D. S., Ghigo J. M., Beckwith J. 1999; Septal localization of FtsQ, an essential cell division protein in Escherichia coli . J Bacteriol 181:521–530
    [Google Scholar]
  10. Chen J. C., Minev M., Beckwith J. 2002; Analysis of ftsQ mutant alleles in Escherichia coli : complementation, septal localization, and recruitment of downstream cell division proteins. J Bacteriol 184:695–705 [CrossRef]
    [Google Scholar]
  11. Corbin B. D., Geissler B., Sadasivam M., Margolin W. 2004; Z-ring-independent interaction between a subdomain of FtsA and late septation proteins as revealed by a polar recruitment assay. J Bacteriol 186:7736–7744 [CrossRef]
    [Google Scholar]
  12. Dai K., Lutkenhaus J. 1992; The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli . J Bacteriol 174:6145–6151
    [Google Scholar]
  13. Dai K., Xu Y., Lutkenhaus J. 1993; Cloning and characterization of ftsN , an essential cell division gene in Escherichia coli isolated as a multicopy suppressor of ftsA12 (Ts. J Bacteriol 175:3790–3797
    [Google Scholar]
  14. Dai K., Xu Y., Lutkenhaus J. 1996; Topological characterization of the essential Escherichia coli cell division protein FtsN. J Bacteriol 178:1328–1334
    [Google Scholar]
  15. Daniel R. A., Errington J. 2000; Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Mol Microbiol 36:278–289 [CrossRef]
    [Google Scholar]
  16. Dente L., Cesareni G., Cortese R. 1983; pEMBL: a new family of single stranded plasmids. Nucleic Acids Res 11:1645–1655 [CrossRef]
    [Google Scholar]
  17. Di Lallo G., Castagnoli L., Ghelardini P., Paolozzi L. 2001; A two-hybrid system based on chimeric operator recognition for studying protein homo/heterodimerization in Escherichia coli . Microbiology 147:1651–1656
    [Google Scholar]
  18. Di Lallo G., Fagioli M., Barionovi D., Ghelardini P., Paolozzi L. 2003; Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation. Microbiology 149:3353–3359 [CrossRef]
    [Google Scholar]
  19. Dopazo A., Palacios P., Sanchez M., Pla J., Vicente M. 1992; An amino-proximal domain required for the localization of FtsQ in the cytoplasmic membrane, and for its biological function in E. coli . Mol Microbiol 6:715–722 [CrossRef]
    [Google Scholar]
  20. Draper G. C., McLennan N., Begg K., Masters M., Donachie W. D. 1998; Only the N-terminal domain of FtsK functions in cell division. J Bacteriol 180:4621–4627
    [Google Scholar]
  21. Duong F., Wickner W. 1997; Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J 16:2756–2768 [CrossRef]
    [Google Scholar]
  22. Errington J., Daniel R. A., Sheffers D. J. 2003; Cytokinesis in bacteria. Microbiol Mol Biol Rev 67:52–65 [CrossRef]
    [Google Scholar]
  23. Froshauer S., Beckwith J. 1984; The nucleotide sequence of the gene for MalF protein, an inner membrane component of the maltose transport system of Escherichia coli . Repeated DNA sequences are found in the malE-malF intercistronic region. J Biol Chem 259:10896–10903
    [Google Scholar]
  24. Geissler B., Margolin W. 2005; Evidence for functional overlap among multiple bacterial cell division proteins: compensating for the loss of FtsK. Mol Microbiol 58:596–612 [CrossRef]
    [Google Scholar]
  25. Geissler B., Elraheb D., Margolin W. 2003; A gain-of-function mutation in ftsA bypasses the requirement for the essential cell division gene zipA in Escherichia coli . Proc Natl Acad Sci U S A 100:4197–4202 [CrossRef]
    [Google Scholar]
  26. Gerard P., Vernet T., Zapun A. 2002; Membrane topology of the Streptococcus pneumoniae FtsW division protein. J Bacteriol 184:1925–1931 [CrossRef]
    [Google Scholar]
  27. Goehring N. W., Beckwith J. 2005; Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol 15:514–526 [CrossRef]
    [Google Scholar]
  28. Goehring N. W., Gueiros-Filho F., Beckwith J. 2005; Premature targeting of a cell division protein to midcell allows dissection of divisome assembly in Escherichia coli . Genes Dev 19:127–137 [CrossRef]
    [Google Scholar]
  29. Guzman L. M., Barondess J. J., Beckwith J. 1992; FtsL, an essential cytoplasmic membrane protein involved in cell division in Escherichia coli . J Bacteriol 174:7716–7728
    [Google Scholar]
  30. Guzman L. M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  31. Guzman L. M., Weiss D. S., Beckwith J. 1997; Domain-swapping analysis of FtsI, FtsL, and FtsQ, bitopic membrane proteins essential for cell division in Escherichia coli . J Bacteriol 179:5094–5103
    [Google Scholar]
  32. Henriques A. O., Glaser P., Piggot P. J., Moran C. P. Jr 1998; Control of cell shape and elongation by the rodA gene in Bacillus subtilis . Mol Microbiol 28:235–247 [CrossRef]
    [Google Scholar]
  33. Hofnung M. 1974; Divergent operons and the genetic structure of the maltose B region in Escherichia coli K12. Genetics 76:169–184
    [Google Scholar]
  34. Ikeda M., Sato T., Wachi M., Jung H. K., Ishino F., Kobayashi Y., Matsuhashi M. 1989; Structural similarity among Escherichia coli FtsW and RodA proteins and Bacillus subtilis SpoVE protein, which function in cell division, cell elongation, and spore formation, respectively. J Bacteriol 171:6375–6378
    [Google Scholar]
  35. Karimova G., Dautin N., Ladant D. 2005; Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243 [CrossRef]
    [Google Scholar]
  36. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of head bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  37. Legrain P., Selig L. 2000; Genome-wide protein interaction maps using two-hybrid systems. FEBS Lett 480:32–36 [CrossRef]
    [Google Scholar]
  38. Lowe J., Amos L. A. 1998; Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203–206 [CrossRef]
    [Google Scholar]
  39. Lutkenhaus J., Addinall S. G. 1997; Bacterial cell division and the Z ring. Annu Rev Biochem 66:93–116 [CrossRef]
    [Google Scholar]
  40. Ma X., Sun Q., Wang R., Singh G., Jonietz E. L., Margolin W. 1997; Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring. J Bacteriol 179:6788–6797
    [Google Scholar]
  41. Margolin W. 2000; Themes and variations in prokaryotic cell division. FEMS Microbiol Rev 24:531–548 [CrossRef]
    [Google Scholar]
  42. Massidda O., Anderluzzi D., Friedli L., Feger G. 1998; Unconventional organization of the division and cell wall gene cluster of Streptococcus pneumoniae . Microbiology 144:3069–3078 [CrossRef]
    [Google Scholar]
  43. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Noirclerc-Savoye M., Le Gouellec A., Morlot C., Dideberg O., Vernet T., Zapun A. 2005; In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co-localization at the division site in Streptococcus pneumoniae . Mol Microbiol 55:413–424
    [Google Scholar]
  45. Pastoret S., Fraipont C., Wolf B., Aarsman M. E., Piette A., Thomas A., Brasseur R., Nguyen-Disteche M, den Blaauwen T. 2004; Functional analysis of the cell division protein FtsW of Escherichia coli . J Bacteriol 186:8370–8379 [CrossRef]
    [Google Scholar]
  46. Piette A., Fraipont C., Den Blaauwen T., Aarsman M. E., Pastoret S., Nguyen-Disteche M. 2004; Structural determinants required to target penicillin-binding protein 3 to the septum of Escherichia coli . J Bacteriol 186:6110–6117 [CrossRef]
    [Google Scholar]
  47. Real G., Autret S., Harry E. J., Errington J., Henriques A. O. 2005; Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis . Mol Microbiol 55:349–367
    [Google Scholar]
  48. Robson S. A., King G. F. 2006; Domain architecture and structure of the bacterial cell division protein DivIB. Proc Natl Acad Sci U S A 103:6700–6705 [CrossRef]
    [Google Scholar]
  49. Romberg L., Levin P. A. 2003; Assembly dynamics of the bacterial cell division protein FtsZ: poised at the edge of stability. Annu Rev Microbiol 57:125–154 [CrossRef]
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Sanchez-Pulido L., Devos D., Genevrois S., Vicente M., Valencia A. 2003; potra: a conserved domain in the FtsQ family and a class of beta-barrel outer membrane proteins. Trends Biochem Sci 28:523–526 [CrossRef]
    [Google Scholar]
  52. Scotti P. A., Valent Q. A., Manting E. H., Urbanus M. L., Driessen A. J., Oudega B., Luirink J. 1999; SecA is not required for signal recognition particle-mediated targeting and initial membrane insertion of a nascent inner membrane protein. J Biol Chem 274:29883–29888 [CrossRef]
    [Google Scholar]
  53. Sherman M., Yu, Goldberg A. L. 1992; Involvement of the chaperonin DnaK in the rapid degradation of a mutant protein in Escherichia coli . EMBO J 11:71–77
    [Google Scholar]
  54. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from acrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354 [CrossRef]
    [Google Scholar]
  55. Vicente M., Rico A. I. 2006; The order of the ring: assembly of Escherichia coli cell division components. Mol Microbiol 61:5–8 [CrossRef]
    [Google Scholar]
  56. Vicente M., Rico A. I., Martinez-Arteaga R., Mingorance J. 2006; Septum enlightenment: assembly of bacterial division proteins. J Bacteriol 188:19–27 [CrossRef]
    [Google Scholar]
  57. Wang L., Lutkenhaus J. 1998; FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol Microbiol 29:731–740 [CrossRef]
    [Google Scholar]
  58. Weiss D. S. 2004; Bacterial cell division and the septal ring. Mol Microbiol 54:588–597 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000265-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000265-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error