Bacterial degradation of poly(-1,4-isoprene) (gutta percha) Free

Abstract

Gutta percha, the -isomer of polyisoprene, is being used for several technical applications due to its resistance to biological degradation. In the past, several attempts to isolate micro-organisms capable of degrading chemically pure poly(-1,4-isoprene) have failed. This is the first report on axenic cultures of bacteria capable of degrading gutta percha. From about 100 different habitats and enrichment cultures, six bacterial strains were isolated which utilize synthetic poly(-1,4-isoprene) as sole carbon and energy source for growth. All isolates were assigned to the genus based on 16S rRNA gene sequences. Four isolates were identified as strains of (L1b, SH22a, SEI2b and SEII5a), one isolate was identified as a strain of (SM1) and the other as a strain of (WE30). In addition, the type strain of obtained from a culture collection (DSM 44801) was shown to degrade poly(-1,4-isoprene). Degradation of poly(-1,4-isoprene) by these seven strains was verified in mineralization experiments by determining the release of CO. All seven strains were also capable of mineralizing poly(-1,4-isoprene) and to use this polyisoprenoid as a carbon and energy source for growth. Mineralization of poly(-1,4-isoprene) after 80 days varied from 3 % (strain SM1) to 54 % (strain SEI2b) and from 34 % (strain L1b) to 43 % (strain SH22a) for the -isomer after 78 days. In contrast, strain VH2, which was previously isolated as a potent poly(-1,4-isoprene)-degrading bacterium, was unable to degrade poly(-1,4-isoprene). Scanning electron microscopy revealed cavities in solid materials prepared from poly(-1,4-isoprene) and also from poly(-1,4-isoprene) after incubation with strain WE30 or with strain L1b, whereas solid poly(-1,4-isoprene) material remained unaffected if incubated with strain VH2 or under sterile conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000109-0
2007-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/347.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000109-0&mimeType=html&fmt=ahah

References

  1. Arenskötter M., Bröker D., Steinbüchel A. 2004; Biology of the metabolically diverse genus Gordonia . Appl Environ Microbiol 70:3195–3204 [CrossRef]
    [Google Scholar]
  2. Arvanitoyannis I., Kolokuris I., Nakayama A., Aiba S. 1998; Preparation and study of novel biodegradable blends based on gelatinized starch and 1,4-transpolyisoprene (gutta percha) for food packaging or biomedical applications. Carbohydr Polym 34:291–302
    [Google Scholar]
  3. Backhaus R. A. 1985; Rubber formation in plants. Israel J Bot 34:283–293
    [Google Scholar]
  4. Banh Q., Arenskötter M., Steinbüchel A. 2005; Establishment of Tn 5096 -based transposon mutagenesis in Gordonia polyisoprenivorans . Appl Environ Microbiol 71:5077–5084 [CrossRef]
    [Google Scholar]
  5. Braaz R., Fischer P., Jendrossek D. 2004; Novel type of heme-dependent oxygenase catalyzes oxidative cleavage of rubber (poly- cis -1,4-isoprene. Appl Environ Microbiol 70:7388–7395 [CrossRef]
    [Google Scholar]
  6. Cui Q., Wang L., Huang Y., Liu Z., Goodfellow M. 2005; Nocardia jiangxiensis sp. nov. and Nocardia miyunensis sp. nov., isolated from acidic soils. Int J Syst Evol Microbiol 55:1921–1925 [CrossRef]
    [Google Scholar]
  7. Enoki M., Doi Y., Iwata T. 2003; Oxidative degradation of trans -1,4-polyisoprene cast films and single crystals by enzyme-mediator systems. Macromol Biosci 3:668–674 [CrossRef]
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Ibrahim E. M. A., Luftmann H., Arenskötter M., Steinbüchel A. 2006; Identification of poly( cis -1,4-isoprene) degradation intermediates during growth of moderately thermophilic Actinomycetes on rubber and cloning of a functional lcp homologue from Nocardia farcinica strain E1. Appl Environ Microbiol 72:3375–3382 [CrossRef]
    [Google Scholar]
  10. Jendrossek D., Tomassi G., Kroppenstedt R. 1997; Bacterial degradation of natural rubber: a privilege of actinomycetes?. FEMS Microbiol Lett 150:179–188 [CrossRef]
    [Google Scholar]
  11. Kupletskaya M. B., Kuznetsova V. M., Zhukova S. V. 1960; Microbiological maceration of Eucommia leaves. III. Disintegration of gutta and resins in the process of fermentation of the leaves. Mikrobiologiia 29:259–265 in Russian
    [Google Scholar]
  12. Linos A., Steinbüchel A. 1998; Microbial degradation of natural and synthetic rubbers by novel bacteria belonging to the genus Gordona . Kautsch Gummi Kunstst 51:496–499
    [Google Scholar]
  13. Linos A., Berekaa M. M., Reichelt R., Keller U., Schmitt J., Flemming H. C., Kroppenstedt R. M., Steinbüchel A. 2000; Biodegradation of cis -1,4-polyisoprene rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis. Appl Environ Microbiol 66:1639–1645 [CrossRef]
    [Google Scholar]
  14. Perrière G., Gouy M. 1996; WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369 [CrossRef]
    [Google Scholar]
  15. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  16. Rose K., Steinbüchel A. 2005; Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms. Appl Environ Microbiol 71:2803–2812 [CrossRef]
    [Google Scholar]
  17. Rose K., Tenberge K. B., Steinbüchel A. 2005; Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly( cis -1,4-isoprene) rubber degradation. Biomacromolecules 6:180–188 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Schlegel H. G., Kaltwasser H., Gottschalk G. 1961; Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222 [CrossRef]
    [Google Scholar]
  20. Söhngen N. L., Fol J. G. 1914; Die Zersetzung des Kautschuks durch Mikroben. Zentralbl Bakteriol Parasitenkd Infektionskr 40:87–98
    [Google Scholar]
  21. Steinbüchel A. 2005; Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr Opin Biotechnol 16:607–613 [CrossRef]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Wallace R. J., Brown B. A., Tsukamura M., Brown J. M., Onyi G. O. 1991; Clinical and laboratory features of Nocardia nova . J Clin Microbiol 29:2407–2411
    [Google Scholar]
  24. Yamamura H., Hayakawa M., Nakagawa Y., Tamura T., Kohno T., Komatsu F., Iimura Y. 2005; Nocardia takedensis sp. nov., isolated from moat sediment and scumming activated sludge. Int J Syst Evol Microbiol 55:433–436 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000109-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000109-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed