1887

Abstract

Fur (ferric uptake regulator) proteins are principally responsible for maintaining iron homeostasis in prokaryotes. Iron is usually a scarce resource. Its limitation reduces photosynthetic rates and cell growth in cyanobacteria in general and especially in cyanobacteria that are fixing dinitrogen, a process that requires the synthesis of numerous proteins with a high content of iron. This paper shows that in the diazotrophic cyanobacterium sp. strain PCC 7120, levels of mRNA and FurA protein increase significantly in response to nitrogen deprivation, and that up-regulation takes place specifically in proheterocysts and mature heterocysts. Great differences in a Northern blot, probed with , of RNA from an mutant relative to wild-type sp. were attributable to binding of NtcA, a global regulator of nitrogen metabolism, to the promoter of and to the promoter of the antisense transcript .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000091-0
2007-01-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/42.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000091-0&mimeType=html&fmt=ahah

References

  1. Alfonso, M., Perewoska, I. & Kirilovsky, D. ( 2001; ). Redox control of ntcA gene expression in Synechocystis sp. PCC 6803. Nitrogen availability and electron transport regulate the levels of the NtcA protein. Plant Physiol 125, 969–981.[CrossRef]
    [Google Scholar]
  2. Andrews, S. C., Robinson, A. K. & Rodríguez-Quiñones, F. ( 2003; ). Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215–237.[CrossRef]
    [Google Scholar]
  3. Bagg, A. & Neilands, J. B. ( 1987; ). Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26, 5471–5477.[CrossRef]
    [Google Scholar]
  4. Bes, M. T., Hernández, J. A., Peleato, M. L. & Fillat, M. F. ( 2001; ). Cloning, overexpression and interaction of recombinant Fur from the cyanobacterium Anabaena PCC 7119 with isiB and its own promoter. FEMS Microbiol Lett 194, 187–192.[CrossRef]
    [Google Scholar]
  5. Black, T. A., Cai, Y. & Wolk, C. P. ( 1993; ). Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol Microbiol 9, 77–84.[CrossRef]
    [Google Scholar]
  6. Böhme, H. & Haselkorn, R. ( 1988; ). Molecular cloning and nucleotide sequence analysis of the gene coding for heterocyst ferredoxin from the cyanobacterium Anabaena sp. strain PCC 7120. Mol Gen Genet 214, 278–285.[CrossRef]
    [Google Scholar]
  7. Busby, S. & Ebright, R. H. ( 1997; ). Transcription activation at class II CAP-dependent promoters. Mol Microbiol 23, 853–859.[CrossRef]
    [Google Scholar]
  8. Cai, Y. & Wolk, C. P. ( 1997; ). Nitrogen deprivation of Anabaena sp. strain PCC 7120 elicits rapid activation of a gene cluster that is essential for uptake and utilization of nitrate. J Bacteriol 179, 258–266.
    [Google Scholar]
  9. Chastain, C. J., Brusca, J. S., Ramasubramanian, T. S., Wei, T. F. & Golden, J. W. ( 1990; ). A sequence-specific DNA-binding factor (VF1) from Anabaena sp. strain PCC 7120 vegetative cells binds to three adjacent sites in the xisA upstream region. J Bacteriol 172, 5044–5051.
    [Google Scholar]
  10. Cheng, L. J., Shi, L., Lafiti, A. & Zhang, C.-C. ( 2006; ). A pair of iron-responsive genes encoding protein kinases with a Ser/Thr-kinase domain and a His-kinase domain are regulated by NtcA in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 188, 4822–4829.[CrossRef]
    [Google Scholar]
  11. Cormack, B. P., Valdivia, R. H. & Falkow, S. ( 1996; ). FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.[CrossRef]
    [Google Scholar]
  12. De Lorenzo, V., Herrero, M., Giovannini, F. & Neilands, J. B. ( 1988; ). Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. Eur J Biochem 173, 537–546.[CrossRef]
    [Google Scholar]
  13. Ehira, S. & Ohmori, M. ( 2006; ). NrrA, a nitrogen-responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 59, 1692–1703.[CrossRef]
    [Google Scholar]
  14. Ehira, S., Ohmori, M. & Sato, N. ( 2003; ). Genome-wide expression analysis of the responses to nitrogen deprivation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 10, 97–113.[CrossRef]
    [Google Scholar]
  15. Elhai, J. & Wolk, C. P. ( 1988a; ). A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68, 119–138.[CrossRef]
    [Google Scholar]
  16. Elhai, J. & Wolk, C. P. ( 1988b; ). Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167, 747–754.
    [Google Scholar]
  17. Falkowski, P. G., Barber, R. T. & Smetacek, V. V. ( 1998; ). Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–207.[CrossRef]
    [Google Scholar]
  18. Fan, Q., Huang, G., Lechno-Yossef, S., Wolk, C. P., Kaneko, T. & Tabata, S. ( 2005; ). Clustered genes required for synthesis and deposition of envelope glycolipids in Anabaena sp. strain PCC 7120. Mol Microbiol 58, 227–243.[CrossRef]
    [Google Scholar]
  19. Frías, J. E., Flores, E. & Herrero, A. ( 1994; ). Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 14, 823–832.[CrossRef]
    [Google Scholar]
  20. Frías, J. E., Flores, E. & Herrero, A. ( 2000; ). Activation of the Anabaena nir operon promoter requires both NtcA (CAP family) and NtcB (LysR family) transcription factors. Mol Microbiol 38, 613–625.[CrossRef]
    [Google Scholar]
  21. Fuangthong, M., Herbig, A. F., Bsat, N. & Helmann, J. D. ( 2002; ). Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J Bacteriol 184, 3276–3286.[CrossRef]
    [Google Scholar]
  22. Hernández, J. A., López-Gomollón, S., Bes, M. T., Fillat, M. F. & Peleato, M. L. ( 2004a; ). Three fur homologues from Anabaena sp. PCC7120: exploring reciprocal protein-promoter recognition. FEMS Microbiol Lett 236, 275–282.[CrossRef]
    [Google Scholar]
  23. Hernández, J. A., Peleato, M. L., Fillat, M. F. & Bes, M. T. ( 2004b; ). Heme binds to and inhibits the DNA-binding activity of the global regulator FurA from Anabaena sp. PCC 7120. FEBS Lett 577, 35–41.[CrossRef]
    [Google Scholar]
  24. Hernández, J. A., Muro-Pastor, A. M., Flores, E., Bes, M. T., Peleato, M. L. & Fillat, M. F. ( 2006a; ). Identification of a furA cis antisense RNA in the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 355, 325–334.[CrossRef]
    [Google Scholar]
  25. Hernández, J. A., López-Gomollón, S., Muro-Pastor, A., Valladares, A., Bes, M. T., Peleato, M. L. & Fillat, M. F. ( 2006b; ). Interaction of FurA from Anabaena sp. PCC 7120 with DNA: a reducing environment and the presence of Mn2+ are positive effectors in the binding to isiB and furA promoters. Biometals 19, 259–268.[CrossRef]
    [Google Scholar]
  26. Herrero, A., Muro-Pastor, A. M. & Flores, E. ( 2001; ). Nitrogen control in cyanobacteria. J Bacteriol 183, 411–425.[CrossRef]
    [Google Scholar]
  27. Jiang, F., Mannervik, B. & Bergman, B. ( 1997; ). Evidence for redox regulation of the transcription factor NtcA, acting both as an activator and a repressor, in the cyanobacterium Anabaena PCC 7120. Biochem J 327, 513–517.
    [Google Scholar]
  28. Kolb, A., Busby, S., Buc, H., Garges, S. & Adhya, S. ( 1993; ). Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62, 749–795.[CrossRef]
    [Google Scholar]
  29. Kustka, A., Carpenter, E. J. & Sanudo-Wilhelmy, S. A. ( 2002; ). Iron and marine nitrogen fixation: progress and future directions. Res Microbiol 153, 255–262.[CrossRef]
    [Google Scholar]
  30. Laurent, S., Chen, H., Bédu, S., Ziarelli, F., Peng, L. & Zhang, C. C. ( 2005; ). Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 102, 9907–9912.[CrossRef]
    [Google Scholar]
  31. Lee, H. W., Choe, Y. H., Kim, D. K., Jung, S. Y. & Lee, N. G. ( 2004; ). Proteomic analysis of a ferric uptake regulator mutant of Helicobacter pylori: regulation of Helicobacter pylori gene expression by ferric uptake regulator and iron. Proteomics 4, 2014–2027.[CrossRef]
    [Google Scholar]
  32. Li, T., Huang, X., Zhou, R., Liu, Y., Li, B., Nomura, C. & Zhao, J. ( 2002; ). Differential expression and localization of Mn and Fe superoxide dismutases in the heterocystous cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 184, 5096–5103.[CrossRef]
    [Google Scholar]
  33. Liang, J., Scappino, L. & Haselkorn, R. ( 1993; ). The patB gene product, required for growth of the cyanobacterium Anabaena sp. strain PCC 7120 under nitrogen-limiting conditions, contains ferredoxin and helix-turn-helix domains. J Bacteriol 175, 1697–1704.
    [Google Scholar]
  34. Luque, I., Zabulon, G., Contreras, A. & Houmard, J. ( 2001; ). Convergence of two global transcriptional regulators on nitrogen induction of the stress-acclimation gene nblA in the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol 41, 937–947.
    [Google Scholar]
  35. Muro-Pastor, A. M., Valladares, A., Flores, E. & Herrero, A. ( 1999; ). The hetC gene is a direct target of the NtcA transcriptional regulator in cyanobacterial heterocyst development. J Bacteriol 181, 6664–6669.
    [Google Scholar]
  36. Muro-Pastor, M. I., Reyes, J. C. & Florencio, F. J. ( 2001; ). Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J Biol Chem 276, 38320–38328.
    [Google Scholar]
  37. Peña, M. M. & Bullerjahn, G. S. ( 1995; ). The DpsA protein of Synechococcus sp. strain PCC7942 is a DNA-binding hemoprotein. Linkage of the Dps and bacterioferritin protein families. J Biol Chem 270, 22478–22482.[CrossRef]
    [Google Scholar]
  38. Ramasubramanian, T. S., Wei, T. F. & Golden, J. W. ( 1994; ). Two Anabaena sp. strain PCC 7120 DNA-binding factors interact with vegetative cell- and heterocyst-specific genes. J Bacteriol 176, 1214–1223.
    [Google Scholar]
  39. Rippka, R. ( 1988; ). Isolation and purification of cyanobacteria. Methods Enzymol 167, 3–27.
    [Google Scholar]
  40. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Straus, N. A. ( 1994; ). Iron deprivation: physiology and gene regulation. In The Molecular Biology of Cyanobacteria, pp. 731–750. Edited by D. A. Bryant. Dordrecht: Kluwer Academic Publishers.
  42. Valladares, A., Muro-Pastor, A. M., Fillat, M. F., Herrero, A. & Flores, E. ( 1999; ). Constitutive and nitrogen-regulated promoters of the petH gene encoding ferredoxin : NADP+ reductase in the heterocyst-forming cyanobacterium Anabaena sp. FEBS Lett 449, 159–164.[CrossRef]
    [Google Scholar]
  43. Wolk, C. P., Elhai, J., Kuritz, T. & Holland, D. ( 1993; ). Amplified expression of a transcriptional pattern formed during development of Anabaena. Mol Microbiol 7, 441–445.[CrossRef]
    [Google Scholar]
  44. Wolk, C. P., Ernst, A. & Elhai, J. ( 1994; ). Heterocyst metabolism and development. In The Molecular Biology of Cyanobacteria, pp. 769–823. Edited by D. A. Bryant. Dordrecht: Kluwer Academic Publishers.
  45. Yoon, H. S. & Golden, J. W. ( 2001; ). PatS and products of nitrogen fixation control heterocyst pattern. J Bacteriol 183, 2605–2613.[CrossRef]
    [Google Scholar]
  46. Zhang, Z., Gosset, G., Barabote, R., Gonzalez, C. S., Cuevas, W. A. & Saier, M. H., Jr ( 2005; ). Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J Bacteriol 187, 980–990.[CrossRef]
    [Google Scholar]
  47. Zheng, M., Doan, B., Schneider, T. D. & Storz, G. ( 1999; ). OxyR and SoxRS regulation of fur. J Bacteriol 181, 4639–4643.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000091-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000091-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 42 - 50

Schematic diagram of plasmid construction. See text for details. pRL2696' (8910 bp) is the II- I fragment of pRL2696 that remains upon excision of the chloramphenicol cassette. [ PDF] (80 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error