1887

Abstract

is responsible for swine pleuropneumonia, a respiratory disease that causes significant global economic loss. Its virulence depends on many factors, such as capsular polysaccharides, RTX toxins and iron-acquisition systems. Analysis of virulence may require easy-to-use models that approximate mammalian infection and avoid ethical issues. Here, we investigate the potential use of the wax moth as an informative model for infection. Genotypically distinct clinical isolates were able to kill larvae at 37 °C but had different LD values, ranging from 10 to 10 c.f.u. per larva. The most virulent isolate (1022) was able to persist and replicate within the insect, while the least virulent (780) was rapidly cleared. We observed a decrease in haemocyte concentration, aggregation and DNA damage post-infection with isolate 1022. Melanization points around bacterial cells were observed in the fat body and pericardial tissues of infected , indicating vigorous cell and humoral immune responses close to the larval dorsal vessel. As found in pigs, an . mutant was significantly attenuated for infection in the model. Additionally, the model could be used to assess the effectiveness of several antimicrobial agents against . is a suitable inexpensive alternative infection model that can be used to study the virulence of , as well as assess the effectiveness of antimicrobial agents against this pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083923-0
2015-02-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/387.html?itemId=/content/journal/micro/10.1099/mic.0.083923-0&mimeType=html&fmt=ahah

References

  1. Aperis G., Fuchs B. B., Anderson C. A., Warner J. E., Calderwood S. B., Mylonakis E.. 2007; Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes Infect9:729–734 [CrossRef][PubMed]
    [Google Scholar]
  2. Archambault M., Harel J., Gouré J., Tremblay Y. D., Jacques M.. 2012; Antimicrobial susceptibilities and resistance genes of Canadian isolates of Actinobacillus pleuropneumoniae. Microb Drug Resist18:198–206 [CrossRef][PubMed]
    [Google Scholar]
  3. Bergin D., Brennan M., Kavanagh K.. 2003; Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microbes Infect5:1389–1395 [CrossRef][PubMed]
    [Google Scholar]
  4. Blackall P. J., Klaasen H. L., van den Bosch H., Kuhnert P., Frey J.. 2002; Proposal of a new serovar of Actinobacillus pleuropneumoniae: serovar 15. Vet Microbiol84:47–52 [CrossRef][PubMed]
    [Google Scholar]
  5. Bossé J. T., Janson H., Sheehan B. J., Beddek A. J., Rycroft A. N., Kroll J. S., Langford P. R.. 2002; Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection. Microbes Infect4:225–235 [CrossRef][PubMed]
    [Google Scholar]
  6. Bossé J. T., Nash J. H., Kroll J. S., Langford P. R.. 2004; Harnessing natural transformation in Actinobacillus pleuropneumoniae: a simple method for allelic replacements. FEMS Microbiol Lett233:277–281 [CrossRef][PubMed]
    [Google Scholar]
  7. Bossé J. T., Soares-Bazzolli D. M., Li Y., Wren B. W., Tucker A. W., Maskell D. J., Rycroft A. N., Langford P. R..on behalf of the BRaDP1T Consortium 2014; The generation of successive unmarked mutations and chromosomal insertion of heterologous genes in Actinobacillus pleuropneumoniae using natural transformation. PLoS ONE9:e111252 [CrossRef][PubMed]
    [Google Scholar]
  8. Brillard J., Ribeiro C., Boemare N., Brehélin M., Givaudan A.. 2001; Two distinct hemolytic activities in Xenorhabdus nematophila are active against immunocompetent insect cells. Appl Environ Microbiol67:2515–2525 [CrossRef][PubMed]
    [Google Scholar]
  9. Browne N., Heelan M., Kavanagh K.. 2013; An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence4:597–603 [CrossRef][PubMed]
    [Google Scholar]
  10. Champion O. L., Karlyshev A. V., Senior N. J., Woodward M., La Ragione R., Howard S. L., Wren B. W., Titball R. W.. 2010; Insect infection model for Campylobacter jejuni reveals that O-methyl phosphoramidate has insecticidal activity. J Infect Dis201:776–782[PubMed]
    [Google Scholar]
  11. Chiers K., De Waele T., Pasmans F., Ducatelle R., Haesebrouck F.. 2010; Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res41:65–80 [CrossRef][PubMed]
    [Google Scholar]
  12. Cho S., Kim Y.. 2004; Hemocytes apoptosis induced by entomopathogenic bacteria, Xenorhabdus and Photorhabdus in Bombyx mori. J Asia Pac Entomol7:195–200 [CrossRef]
    [Google Scholar]
  13. CLSI 2008; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; M31-A3. , 3rd edn. Wayne, PA: Clinical and Laboratory Standards Institute;
  14. Cook S. M., McArthur J. D.. 2013; Developing Galleria mellonella as a model host for human pathogens. Virulence4:350–353 [CrossRef][PubMed]
    [Google Scholar]
  15. Dubreuil J. D., Jacques M., Mittal K. R., Gottschalk M.. 2000; Actinobacillus pleuropneumoniae surface polysaccharides: their role in diagnosis and immunogenicity. Anim Health Res Rev1:73–93 [CrossRef][PubMed]
    [Google Scholar]
  16. Eleftherianos I., Revenis C.. 2011; Role and importance of phenoloxidase in insect hemostasis. J Innate Immun3:28–33 [CrossRef][PubMed]
    [Google Scholar]
  17. Evans B. A., Rozen D. E.. 2012; A Streptococcus pneumoniae infection model in larvae of the wax moth Galleria mellonella. Eur J Clin Microbiol Infect Dis31:2653–2660 [CrossRef][PubMed]
    [Google Scholar]
  18. Fallon J., Kelly J., Kavanagh K.. 2012; Galleria mellonella as a model for fungal pathogenicity testing. Methods Mol Biol845:469–485 [CrossRef][PubMed]
    [Google Scholar]
  19. Farris J. S.. 1969; On cophenetic correlation coefficient. Syst Zool18:279–285 [CrossRef]
    [Google Scholar]
  20. Frey J.. 2011; The role of RTX toxins in host specificity of animal pathogenic Pasteurellaceae. Vet Microbiol153:51–58 [CrossRef][PubMed]
    [Google Scholar]
  21. Garside L. H., Collins M., Langford P. R., Rycroft A. N.. 2002; Actinobacillus pleuropneumoniae serotype 1 carrying the defined aroA mutation is fully avirulent in the pig. Res Vet Sci72:163–167 [CrossRef][PubMed]
    [Google Scholar]
  22. Glavis-Bloom J., Muhammed M., Mylonakis E.. 2012; Of model hosts and man: using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as model hosts for infectious disease research. Adv Exp Med Biol710:11–17 [CrossRef][PubMed]
    [Google Scholar]
  23. Gundogdu O., Mills D. C., Elmi A., Martin M. J., Wren B. W., Dorrell N.. 2011; The Campylobacter jejuni transcriptional regulator Cj1556 plays a role in the oxidative and aerobic stress response and is important for bacterial survival in vivo. J Bacteriol193:4238–4249 [CrossRef][PubMed]
    [Google Scholar]
  24. Hillyer J. F., Barreau C., Vernick K. D.. 2007; Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito haemocoel. Int J Parasitol37:673–681 [CrossRef][PubMed]
    [Google Scholar]
  25. Insua J. L., Llobet E., Moranta D., Pérez-Gutiérrez C., Tomás A., Garmendia J., Bengoechea J. A.. 2013; Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infect Immun81:3552–3565 [CrossRef][PubMed]
    [Google Scholar]
  26. Jaglic Z., Svastova P., Rychlik I., Nedbalcova K., Kucerova Z., Pavlik I., Bartos M.. 2004; Differentiation of Actinobacillus pleuropneumoniae by PCR-REA based on sequence variability of the apxIVA gene and by ribotyping. Vet Microbiol103:63–69 [CrossRef][PubMed]
    [Google Scholar]
  27. Joyce S. A., Gahan C. G. M.. 2010; Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella. Microbiology156:3456–3468 [CrossRef][PubMed]
    [Google Scholar]
  28. Kavanagh K., Reeves E. P.. 2004; Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev28:101–112 [CrossRef][PubMed]
    [Google Scholar]
  29. Kemp M. W., Massey R. C.. 2007; The use of insect models to study human pathogens. Drug Discov Today Dis Models4:105–110 [CrossRef]
    [Google Scholar]
  30. King J. G., Hillyer J. F.. 2012; Infection-induced interaction between the mosquito circulatory and immune systems. PLoS Pathog8:e1003058 [CrossRef][PubMed]
    [Google Scholar]
  31. Klitgaard K., Friis C., Jensen T. K., Angen O., Boye M.. 2012; Transcriptional portrait of Actinobacillus pleuropneumoniae during acute disease - potential strategies for survival and persistence in the host. PLoS ONE7:e35549 [CrossRef][PubMed]
    [Google Scholar]
  32. Kuhnert P., Berthoud H., Straub R., Frey J.. 2003; Host cell specific activity of RTX toxins from haemolytic Actinobacillus equuli and Actinobacillus suis. Vet Microbiol92:161–167 [CrossRef][PubMed]
    [Google Scholar]
  33. Lavine M. D., Strand M. R.. 2002; Insect hemocytes and their role in immunity. Insect Biochem Mol Biol32:1295–1309 [CrossRef][PubMed]
    [Google Scholar]
  34. Lionakis M. S.. 2011; Drosophila and Galleria insect model hosts: new tools for the study of fungal virulence, pharmacology and immunology. Virulence2:521–527 [CrossRef][PubMed]
    [Google Scholar]
  35. Liu J., Tan C., Li J., Chen H., Xu P., He Q., Bei W., Chen H.. 2008; Characterization of ISApl1, an insertion element identified from Actinobacillus pleuropneumoniae field isolate in China. Vet Microbiol132:348–354 [CrossRef][PubMed]
    [Google Scholar]
  36. Liu J., Chen Y., Yuan F., Hu L., Bei W., Chen H.. 2011; Cloning, expression, and characterization of TonB2 from Actinobacillus pleuropneumoniae and potential use as an antigenic vaccine candidate and diagnostic marker. Can J Vet Res75:183–190[PubMed]
    [Google Scholar]
  37. Loh J. M. S., Adenwalla N., Wiles S., Proft T.. 2013; Galleria mellonella larvae as an infection model for group A streptococcus. Virulence4:419–428 [CrossRef][PubMed]
    [Google Scholar]
  38. Mead G. P., Ratcliffe N. A., Renwrantz L. R.. 1986; The separation of insect haemocyte types on Percoll gradients; methodology and problems. J Insect Physiol32:167–177 [CrossRef]
    [Google Scholar]
  39. Mizerska-Dudka M., Andrejko M.. 2014; Galleria mellonella hemocytes destruction after infection with Pseudomonas aeruginosa. J Basic Microbiol54:232–246 [CrossRef][PubMed]
    [Google Scholar]
  40. Mogensen T. H.. 2009; Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev22:240–273 [CrossRef][PubMed]
    [Google Scholar]
  41. Mohapatra B. R., Mazumder A.. 2008; Comparative efficacy of five different rep-PCR methods to discriminate Escherichia coli populations in aquatic environments. Water Sci Technol58:537–547 [CrossRef][PubMed]
    [Google Scholar]
  42. Mukherjee K., Altincicek B., Hain T., Domann E., Vilcinskas A., Chakraborty T.. 2010; Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microbiol76:310–317 [CrossRef][PubMed]
    [Google Scholar]
  43. Mukherjee K., Hain T., Fischer R., Chakraborty T., Vilcinskas A.. 2013; Brain infection and activation of neuronal repair mechanisms by the human pathogen Listeria monocytogenes in the lepidopteran model host Galleria mellonella. Virulence4:324–332 [CrossRef][PubMed]
    [Google Scholar]
  44. Mylonakis E., Casadevall A., Ausubel F. M.. 2007; Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog3:e101 [CrossRef][PubMed]
    [Google Scholar]
  45. Norville I. H., Hartley M. G., Martinez E., Cantet F., Bonazzi M., Atkins T. P.. 2014; Galleria mellonella as an alternative model of Coxiella burnetii infection. Microbiology160:1175–1181 [CrossRef][PubMed]
    [Google Scholar]
  46. O’Neill C., Jones S. C., Bossé J. T., Watson C. M., Williamson S. M., Rycroft A. N., Kroll J. S., Hartley H. M., Langford P. R.. 2010; Prevalence of Actinobacillus pleuropneumoniae serovars in England and Wales. Vet Rec167:661–662 [CrossRef][PubMed]
    [Google Scholar]
  47. Peleg A. Y., Jara S., Monga D., Eliopoulos G. M., Moellering R. C. Jr, Mylonakis E.. 2009; Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother53:2605–2609 [CrossRef][PubMed]
    [Google Scholar]
  48. Purves J., Cockayne A., Moody P. C. E., Morrissey J. A.. 2010; Comparison of the regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-phosphate dehydrogenase homologues gapA and gapB in Staphylococcus aureus. Infect Immun78:5223–5232 [CrossRef][PubMed]
    [Google Scholar]
  49. Ramarao N., Nielsen-Leroux C., Lereclus D.. 2012; The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp70:e4392[PubMed]
    [Google Scholar]
  50. Rossi C. C., Vicente A. M., Guimarães W. V., Araújo E. F., Queiroz M. V., Bazzolli D. M. S.. 2013; Face to face with Actinobacillus pleuropneumoniae: landscape of the distribution of clinical isolates in Brazil. Afr J Microbiol Res7:2916–2924 [CrossRef]
    [Google Scholar]
  51. Satyavathi V. V., Minz A., Nagaraju J.. 2014; Nodulation: an unexplored cellular defense mechanism in insects. Cell Signal26:1753–1763 [CrossRef][PubMed]
    [Google Scholar]
  52. Senior N. J., Bagnall M. C., Champion O. L., Reynolds S. E., La Ragione R. M., Woodward M. J., Salguero F. J., Titball R. W.. 2011; Galleria mellonella as an infection model for Campylobacter jejuni virulence. J Med Microbiol60:661–669 [CrossRef][PubMed]
    [Google Scholar]
  53. Sheehan B. J., Bossé J. T., Beddek A. J., Rycroft A. N., Kroll J. S., Langford P. R.. 2003; Identification of Actinobacillus pleuropneumoniae genes important for survival during infection in its natural host. Infect Immun71:3960–3970 [CrossRef][PubMed]
    [Google Scholar]
  54. Subashchandrabose S., Leveque R. M., Kirkwood R. N., Kiupel M., Mulks M. H.. 2013; The RNA chaperone Hfq promotes fitness of Actinobacillus pleuropneumoniae during porcine pleuropneumonia. Infect Immun81:2952–2961 [CrossRef][PubMed]
    [Google Scholar]
  55. Sung H. H., Kao W. Y., Su Y. J.. 2003; Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, Macrobrachium rosenbergii. Aquat Toxicol64:25–37 [CrossRef][PubMed]
    [Google Scholar]
  56. Thomas R. J., Hamblin K. A., Armstrong S. J., Müller C. M., Bokori-Brown M., Goldman S., Atkins H. S., Titball R. W.. 2013; Galleria mellonella as a model system to test the pharmacokinetics and efficacy of antibiotics against Burkholderia pseudomallei. Int J Antimicrob Agents41:330–336 [CrossRef][PubMed]
    [Google Scholar]
  57. Trevijano-Contador N., Zaragoza O.. 2014; Expanding the use of alternative models to investigate novel aspects of immunity to microbial pathogens. Virulence5:454–456 [CrossRef][PubMed]
    [Google Scholar]
  58. Xu Z., Chen X., Li L., Li T., Wang S., Chen H., Zhou R.. 2010; Comparative genomic characterization of Actinobacillus pleuropneumoniae. J Bacteriol192:5625–5636 [CrossRef][PubMed]
    [Google Scholar]
  59. Zhou L., Rycroft A. N., Kroll J. S., Langford P. R.. 2008; An Actinobacillus pleuropneumoniae (APP) hfq mutant is attenuated for virulence. In Proceedings of the International Pasteurellaceae Society 12–15th October, Sorento, Italy, P517
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083923-0
Loading
/content/journal/micro/10.1099/mic.0.083923-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error