1887

Abstract

Shikimate can be utilized as the sole source of carbon and energy of . Although biosynthesis and degradation of shikimate are well characterized in , the transport of shikimate has hardly been studied. A mutant strain deficient in loses the ability to grow on shikimate as well as to consume extracellular shikimate, indicating that the gene is involved in shikimate utilization (designated ). The hydropathy profile of the deduced amino acid sequence indicates that ShiA belongs to the metabolite/proton symporter family, which is a member of the major facilitator superfamily. An accumulation assay showed that the uptake of shikimate was hardly detected in the -deficient strain, but was markedly enhanced in a -expressing strain. These results suggested that the uptake of shikimate was mainly mediated by the shikimate transporter encoded by . The level of mRNA induction by shikimate was significantly decreased by the disruption of (designated ), which is located immediately upstream of and encodes a LysR-type transcriptional regulator, suggesting that ShiR acts as an activator of . To our knowledge, this is the first report in Gram-positive bacteria of a shikimate transporter and its regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083733-0
2015-02-01
2020-12-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/254.html?itemId=/content/journal/micro/10.1099/mic.0.083733-0&mimeType=html&fmt=ahah

References

  1. Bongaerts J., Krämer M., Müller U., Raeven L., Wubbolts M.. 2001; Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng3:289–300 [CrossRef][PubMed]
    [Google Scholar]
  2. Bruce N. C., Cain R. B.. 1990; Hydroaromatic metabolism in Rhodococcus rhodochrous: purification and characterisation of its NAD-dependent quinate dehydrogenase. Arch Microbiol154:179–186 [CrossRef]
    [Google Scholar]
  3. Chaudhry M. T., Huang Y., Shen X. H., Poetsch A., Jiang C. Y., Liu S. J.. 2007; Genome-wide investigation of aromatic acid transporters in Corynebacterium glutamicum. Microbiology153:857–865 [CrossRef][PubMed]
    [Google Scholar]
  4. Deutscher J.. 2008; The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol11:87–93 [CrossRef][PubMed]
    [Google Scholar]
  5. Elsemore D. A., Ornston L. N.. 1994; The pca-pob supraoperonic cluster of Acinetobacter calcoaceticus contains quiA, the structural gene for quinate-shikimate dehydrogenase. J Bacteriol176:7659–7666[PubMed]
    [Google Scholar]
  6. Görke B., Stülke J.. 2008; Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol6:613–624 [CrossRef][PubMed]
    [Google Scholar]
  7. Hawkins A. R., Lamb H. K., Moore J. D., Charles I. G., Roberts C. F.. 1993; The pre-chorismate (shikimate) and quinate pathways in filamentous fungi: theoretical and practical aspects. J Gen Microbiol139:2891–2899 [CrossRef][PubMed]
    [Google Scholar]
  8. Hermann T.. 2003; Industrial production of amino acids by coryneform bacteria. J Biotechnol104:155–172 [CrossRef][PubMed]
    [Google Scholar]
  9. Inui M., Murakami S., Okino S., Kawaguchi H., Vertès A. A., Yukawa H.. 2004; Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol7:182–196 [CrossRef][PubMed]
    [Google Scholar]
  10. Kawaguchi H., Sasaki M., Vertès A. A., Inui M., Yukawa H.. 2009; Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol75:3419–3429 [CrossRef][PubMed]
    [Google Scholar]
  11. Knaggs A. R.. 2003; The biosynthesis of shikimate metabolites. Nat Prod Rep20:119–136 [CrossRef][PubMed]
    [Google Scholar]
  12. Kubota T., Tanaka Y., Hiraga K., Inui M., Yukawa H.. 2013; Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum. Appl Microbiol Biotechnol97:8139–8149 [CrossRef][PubMed]
    [Google Scholar]
  13. Kubota T., Tanaka Y., Takemoto N., Watanabe A., Hiraga K., Inui M., Yukawa H.. 2014; Chorismate-dependent transcriptional regulation of quinate/shikimate utilization genes by LysR-type transcriptional regulator QsuR in Corynebacterium glutamicum: carbon flow control at metabolic branch point. Mol Microbiol92:356–368 [CrossRef][PubMed]
    [Google Scholar]
  14. Maddocks S. E., Oyston P. C.. 2008; Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology154:3609–3623 [CrossRef][PubMed]
    [Google Scholar]
  15. Marger M. D., Saier M. H. Jr. 1993; A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci18:13–20 [CrossRef][PubMed]
    [Google Scholar]
  16. Merkens H., Beckers G., Wirtz A., Burkovski A.. 2005; Vanillate metabolism in Corynebacterium glutamicum. Curr Microbiol51:59–65 [CrossRef][PubMed]
    [Google Scholar]
  17. Nakata K., Inui M., Kós P., Vertès A. A., Yukawa H.. 2003; Vectors for the genetics engineering of corynebacteria. In Fermentation Biotechnology pp.175–191 Edited by Saha B. C.. Washington, DC: American Chemical Society; [CrossRef]
    [Google Scholar]
  18. Nandineni M. R., Gowrishankar J.. 2004; Evidence for an arginine exporter encoded by yggA (argO) that is regulated by the LysR-type transcriptional regulator ArgP in Escherichia coli. J Bacteriol186:3539–3546 [CrossRef][PubMed]
    [Google Scholar]
  19. Pao S. S., Paulsen I. T., Saier M. H. Jr. 1998; Major facilitator superfamily. Microbiol Mol Biol Rev62:1–34[PubMed]
    [Google Scholar]
  20. Prévost K., Salvail H., Desnoyers G., Jacques J. F., Phaneuf E., Massé E.. 2007; The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol Microbiol64:1260–1273 [CrossRef][PubMed]
    [Google Scholar]
  21. Reddy V. S., Shlykov M. A., Castillo R., Sun E. I., Saier M. H. Jr. 2012; The major facilitator superfamily (MFS) revisited. FEBS J279:2022–2035 [CrossRef][PubMed]
    [Google Scholar]
  22. Saier M. H. Jr, Beatty J. T., Goffeau A., Harley K. T., Heijne W. H., Huang S. C., Jack D. L., Jähn P. S., Lew K..& other authors ( 1999; The major facilitator superfamily. J Mol Microbiol Biotechnol1:257–279[PubMed]
    [Google Scholar]
  23. Saint C. P., Romas P.. 1996; 4-Methylphthalate catabolism in Burkholderia (Pseudomonas) cepacia Pc701: a gene encoding a phthalate-specific permease forms part of a novel gene cluster. Microbiology142:2407–2418 [CrossRef][PubMed]
    [Google Scholar]
  24. Schell M. A.. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol47:597–626 [CrossRef][PubMed]
    [Google Scholar]
  25. Seol W., Shatkin A. J.. 1991; Escherichia coli kgtP encodes an α-ketoglutarate transporter. Proc Natl Acad Sci U S A88:3802–3806 [CrossRef][PubMed]
    [Google Scholar]
  26. Suzuki H., Ohnishi Y., Furusho Y., Sakuda S., Horinouchi S.. 2006a; Novel benzene ring biosynthesis from C3 and C4 primary metabolites by two enzymes. J Biol Chem281:36944–36951 [CrossRef][PubMed]
    [Google Scholar]
  27. Suzuki N., Okai N., Nonaka H., Tsuge Y., Inui M., Yukawa H.. 2006b; High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol72:3750–3755 [CrossRef][PubMed]
    [Google Scholar]
  28. Teramoto H., Shirai T., Inui M., Yukawa H.. 2008; Identification of a gene encoding a transporter essential for utilization of C4 dicarboxylates in Corynebacterium glutamicum. Appl Environ Microbiol74:5290–5296 [CrossRef][PubMed]
    [Google Scholar]
  29. Teramoto H., Inui M., Yukawa H.. 2009; Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Appl Environ Microbiol75:3461–3468 [CrossRef][PubMed]
    [Google Scholar]
  30. Tresguerres M. E. F., De Torrontegui G., Cánovas J. L.. 1970; The metabolism of quinate by Acinetobacter calco-aceticus. Arch Mikrobiol70:110–118 [CrossRef][PubMed]
    [Google Scholar]
  31. Tsuchida Y., Kimura S., Suzuki N., Inui M., Yukawa H.. 2010; Characterization of a 24-kb plasmid pCGR2 newly isolated from Corynebacterium glutamicum. Appl Microbiol Biotechnol87:1855–1866 [CrossRef][PubMed]
    [Google Scholar]
  32. Tsuge Y., Ogino H., Teramoto H., Inui M., Yukawa H.. 2008; Deletion of cgR_1596 and cgR_2070, encoding NlpC/P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R. J Bacteriol190:8204–8214 [CrossRef][PubMed]
    [Google Scholar]
  33. Tusnády G. E., Simon I.. 1998; Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol283:489–506 [CrossRef][PubMed]
    [Google Scholar]
  34. van der Rest M. E., Schwarz E., Oesterhelt D., Konings W. N.. 1990; DNA sequence of a citrate carrier of Klebsiella pneumoniae. Eur J Biochem189:401–407 [CrossRef][PubMed]
    [Google Scholar]
  35. Vogl C., Grill S., Schilling O., Stülke J., Mack M., Stolz J.. 2007; Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol189:7367–7375 [CrossRef][PubMed]
    [Google Scholar]
  36. Wendisch V. F., de Graaf A. A., Sahm H., Eikmanns B. J.. 2000; Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol182:3088–3096 [CrossRef][PubMed]
    [Google Scholar]
  37. Whipp M. J., Camakaris H., Pittard A. J.. 1998; Cloning and analysis of the shiA gene, which encodes the shikimate transport system of Escherichia coli K-12. Gene209:185–192 [CrossRef][PubMed]
    [Google Scholar]
  38. Xu Y., Wang S. H., Chao H. J., Liu S. J., Zhou N. Y.. 2012; Biochemical and molecular characterization of the gentisate transporter GenK in Corynebacterium glutamicum. PLoS ONE7:e38701 [CrossRef][PubMed]
    [Google Scholar]
  39. Yamamoto S., Gunji W., Suzuki H., Toda H., Suda M., Jojima T., Inui M., Yukawa H.. 2012; Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl Environ Microbiol78:4447–4457 [CrossRef][PubMed]
    [Google Scholar]
  40. Youn J. W., Jolkver E., Krämer R., Marin K., Wendisch V. F.. 2008; Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J Bacteriol190:6458–6466 [CrossRef][PubMed]
    [Google Scholar]
  41. Youn J. W., Jolkver E., Krämer R., Marin K., Wendisch V. F.. 2009; Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J Bacteriol191:5480–5488 [CrossRef][PubMed]
    [Google Scholar]
  42. Yukawa H., Omumasaba C. A., Nonaka H., Kós P., Okai N., Suzuki N., Suda M., Tsuge Y., Watanabe J..& other authors ( 2007; Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology153:1042–1058 [CrossRef][PubMed]
    [Google Scholar]
  43. Zhao Z., Ding J. Y., Li T., Zhou N. Y., Liu S. J.. 2011; The ncgl1108 (PheP Cg) gene encodes a new l-Phe transporter in Corynebacterium glutamicum. Appl Microbiol Biotechnol90:2005–2013 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083733-0
Loading
/content/journal/micro/10.1099/mic.0.083733-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error