1887

Abstract

Shikimate can be utilized as the sole source of carbon and energy of . Although biosynthesis and degradation of shikimate are well characterized in , the transport of shikimate has hardly been studied. A mutant strain deficient in loses the ability to grow on shikimate as well as to consume extracellular shikimate, indicating that the gene is involved in shikimate utilization (designated ). The hydropathy profile of the deduced amino acid sequence indicates that ShiA belongs to the metabolite/proton symporter family, which is a member of the major facilitator superfamily. An accumulation assay showed that the uptake of shikimate was hardly detected in the -deficient strain, but was markedly enhanced in a -expressing strain. These results suggested that the uptake of shikimate was mainly mediated by the shikimate transporter encoded by . The level of mRNA induction by shikimate was significantly decreased by the disruption of (designated ), which is located immediately upstream of and encodes a LysR-type transcriptional regulator, suggesting that ShiR acts as an activator of . To our knowledge, this is the first report in Gram-positive bacteria of a shikimate transporter and its regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083733-0
2015-02-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/254.html?itemId=/content/journal/micro/10.1099/mic.0.083733-0&mimeType=html&fmt=ahah

References

  1. Bongaerts J., Krämer M., Müller U., Raeven L., Wubbolts M. 2001; Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3:289–300 [View Article][PubMed]
    [Google Scholar]
  2. Bruce N. C., Cain R. B. 1990; Hydroaromatic metabolism in Rhodococcus rhodochrous: purification and characterisation of its NAD-dependent quinate dehydrogenase. Arch Microbiol 154:179–186 [View Article]
    [Google Scholar]
  3. Chaudhry M. T., Huang Y., Shen X. H., Poetsch A., Jiang C. Y., Liu S. J. 2007; Genome-wide investigation of aromatic acid transporters in Corynebacterium glutamicum. Microbiology 153:857–865 [View Article][PubMed]
    [Google Scholar]
  4. Deutscher J. 2008; The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11:87–93 [View Article][PubMed]
    [Google Scholar]
  5. Elsemore D. A., Ornston L. N. 1994; The pca-pob supraoperonic cluster of Acinetobacter calcoaceticus contains quiA, the structural gene for quinate-shikimate dehydrogenase. J Bacteriol 176:7659–7666[PubMed]
    [Google Scholar]
  6. Görke B., Stülke J. 2008; Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624 [View Article][PubMed]
    [Google Scholar]
  7. Hawkins A. R., Lamb H. K., Moore J. D., Charles I. G., Roberts C. F. 1993; The pre-chorismate (shikimate) and quinate pathways in filamentous fungi: theoretical and practical aspects. J Gen Microbiol 139:2891–2899 [View Article][PubMed]
    [Google Scholar]
  8. Hermann T. 2003; Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172 [View Article][PubMed]
    [Google Scholar]
  9. Inui M., Murakami S., Okino S., Kawaguchi H., Vertès A. A., Yukawa H. 2004; Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196 [View Article][PubMed]
    [Google Scholar]
  10. Kawaguchi H., Sasaki M., Vertès A. A., Inui M., Yukawa H. 2009; Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol 75:3419–3429 [View Article][PubMed]
    [Google Scholar]
  11. Knaggs A. R. 2003; The biosynthesis of shikimate metabolites. Nat Prod Rep 20:119–136 [View Article][PubMed]
    [Google Scholar]
  12. Kubota T., Tanaka Y., Hiraga K., Inui M., Yukawa H. 2013; Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum. Appl Microbiol Biotechnol 97:8139–8149 [View Article][PubMed]
    [Google Scholar]
  13. Kubota T., Tanaka Y., Takemoto N., Watanabe A., Hiraga K., Inui M., Yukawa H. 2014; Chorismate-dependent transcriptional regulation of quinate/shikimate utilization genes by LysR-type transcriptional regulator QsuR in Corynebacterium glutamicum: carbon flow control at metabolic branch point. Mol Microbiol 92:356–368 [View Article][PubMed]
    [Google Scholar]
  14. Maddocks S. E., Oyston P. C. 2008; Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154:3609–3623 [View Article][PubMed]
    [Google Scholar]
  15. Marger M. D., Saier M. H. Jr 1993; A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 18:13–20 [View Article][PubMed]
    [Google Scholar]
  16. Merkens H., Beckers G., Wirtz A., Burkovski A. 2005; Vanillate metabolism in Corynebacterium glutamicum. Curr Microbiol 51:59–65 [View Article][PubMed]
    [Google Scholar]
  17. Nakata K., Inui M., Kós P., Vertès A. A., Yukawa H. 2003; Vectors for the genetics engineering of corynebacteria. In Fermentation Biotechnology pp. 175–191 Edited by Saha B. C. Washington, DC: American Chemical Society; [View Article]
    [Google Scholar]
  18. Nandineni M. R., Gowrishankar J. 2004; Evidence for an arginine exporter encoded by yggA (argO) that is regulated by the LysR-type transcriptional regulator ArgP in Escherichia coli. J Bacteriol 186:3539–3546 [View Article][PubMed]
    [Google Scholar]
  19. Pao S. S., Paulsen I. T., Saier M. H. Jr 1998; Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34[PubMed]
    [Google Scholar]
  20. Prévost K., Salvail H., Desnoyers G., Jacques J. F., Phaneuf E., Massé E. 2007; The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol Microbiol 64:1260–1273 [View Article][PubMed]
    [Google Scholar]
  21. Reddy V. S., Shlykov M. A., Castillo R., Sun E. I., Saier M. H. Jr 2012; The major facilitator superfamily (MFS) revisited. FEBS J 279:2022–2035 [View Article][PubMed]
    [Google Scholar]
  22. Saier M. H. Jr, Beatty J. T., Goffeau A., Harley K. T., Heijne W. H., Huang S. C., Jack D. L., Jähn P. S., Lew K.& other authors ( 1999; The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279[PubMed]
    [Google Scholar]
  23. Saint C. P., Romas P. 1996; 4-Methylphthalate catabolism in Burkholderia (Pseudomonas) cepacia Pc701: a gene encoding a phthalate-specific permease forms part of a novel gene cluster. Microbiology 142:2407–2418 [View Article][PubMed]
    [Google Scholar]
  24. Schell M. A. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626 [View Article][PubMed]
    [Google Scholar]
  25. Seol W., Shatkin A. J. 1991; Escherichia coli kgtP encodes an α-ketoglutarate transporter. Proc Natl Acad Sci U S A 88:3802–3806 [View Article][PubMed]
    [Google Scholar]
  26. Suzuki H., Ohnishi Y., Furusho Y., Sakuda S., Horinouchi S. 2006a; Novel benzene ring biosynthesis from C3 and C4 primary metabolites by two enzymes. J Biol Chem 281:36944–36951 [View Article][PubMed]
    [Google Scholar]
  27. Suzuki N., Okai N., Nonaka H., Tsuge Y., Inui M., Yukawa H. 2006b; High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72:3750–3755 [View Article][PubMed]
    [Google Scholar]
  28. Teramoto H., Shirai T., Inui M., Yukawa H. 2008; Identification of a gene encoding a transporter essential for utilization of C4 dicarboxylates in Corynebacterium glutamicum. Appl Environ Microbiol 74:5290–5296 [View Article][PubMed]
    [Google Scholar]
  29. Teramoto H., Inui M., Yukawa H. 2009; Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Appl Environ Microbiol 75:3461–3468 [View Article][PubMed]
    [Google Scholar]
  30. Tresguerres M. E. F., De Torrontegui G., Cánovas J. L. 1970; The metabolism of quinate by Acinetobacter calco-aceticus. Arch Mikrobiol 70:110–118 [View Article][PubMed]
    [Google Scholar]
  31. Tsuchida Y., Kimura S., Suzuki N., Inui M., Yukawa H. 2010; Characterization of a 24-kb plasmid pCGR2 newly isolated from Corynebacterium glutamicum. Appl Microbiol Biotechnol 87:1855–1866 [View Article][PubMed]
    [Google Scholar]
  32. Tsuge Y., Ogino H., Teramoto H., Inui M., Yukawa H. 2008; Deletion of cgR_1596 and cgR_2070, encoding NlpC/P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R. J Bacteriol 190:8204–8214 [View Article][PubMed]
    [Google Scholar]
  33. Tusnády G. E., Simon I. 1998; Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506 [View Article][PubMed]
    [Google Scholar]
  34. van der Rest M. E., Schwarz E., Oesterhelt D., Konings W. N. 1990; DNA sequence of a citrate carrier of Klebsiella pneumoniae. Eur J Biochem 189:401–407 [View Article][PubMed]
    [Google Scholar]
  35. Vogl C., Grill S., Schilling O., Stülke J., Mack M., Stolz J. 2007; Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol 189:7367–7375 [View Article][PubMed]
    [Google Scholar]
  36. Wendisch V. F., de Graaf A. A., Sahm H., Eikmanns B. J. 2000; Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182:3088–3096 [View Article][PubMed]
    [Google Scholar]
  37. Whipp M. J., Camakaris H., Pittard A. J. 1998; Cloning and analysis of the shiA gene, which encodes the shikimate transport system of Escherichia coli K-12. Gene 209:185–192 [View Article][PubMed]
    [Google Scholar]
  38. Xu Y., Wang S. H., Chao H. J., Liu S. J., Zhou N. Y. 2012; Biochemical and molecular characterization of the gentisate transporter GenK in Corynebacterium glutamicum. PLoS ONE 7:e38701 [View Article][PubMed]
    [Google Scholar]
  39. Yamamoto S., Gunji W., Suzuki H., Toda H., Suda M., Jojima T., Inui M., Yukawa H. 2012; Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl Environ Microbiol 78:4447–4457 [View Article][PubMed]
    [Google Scholar]
  40. Youn J. W., Jolkver E., Krämer R., Marin K., Wendisch V. F. 2008; Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J Bacteriol 190:6458–6466 [View Article][PubMed]
    [Google Scholar]
  41. Youn J. W., Jolkver E., Krämer R., Marin K., Wendisch V. F. 2009; Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J Bacteriol 191:5480–5488 [View Article][PubMed]
    [Google Scholar]
  42. Yukawa H., Omumasaba C. A., Nonaka H., Kós P., Okai N., Suzuki N., Suda M., Tsuge Y., Watanabe J.& other authors ( 2007; Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058 [View Article][PubMed]
    [Google Scholar]
  43. Zhao Z., Ding J. Y., Li T., Zhou N. Y., Liu S. J. 2011; The ncgl1108 (PheP Cg) gene encodes a new l-Phe transporter in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:2005–2013 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083733-0
Loading
/content/journal/micro/10.1099/mic.0.083733-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error